cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141430 a(n) = A000111(n) mod 9.

Original entry on oeis.org

1, 1, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7
Offset: 0

Views

Author

Paul Curtz, Aug 06 2008

Keywords

Comments

After the initial 1,1, the sequence is periodic with period 12.
This sequence's periodic part is a shuffled version of the two period-6 sequences A070366 and A010697. The sequence contains only the digits 1, 2, 4, 5, 7 and 8 (those of A141425).

Crossrefs

Programs

  • Python
    def A141430(n): return (2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2)[n%12] if n>1 else 1 # Chai Wah Wu, Apr 17 2023

Formula

a(n) = A000111(n) mod 9 = A004099(n) mod 9.
a(n+12) = a(n), n > 1.
a(n) + a(n+6) = 9, n > 1.
a(n+11-p) - a(n+p) = 6 (p=0 or 5), 0 (p=1 or 4), -3 (p=2 or 3), any n > 1.
G.f.: (6x^8-5x^7+x^6+2x^5+3x^4+x^3+1) / ((1-x)(x^2+1)(x^4-x^2+1)). - R. J. Mathar, Dec 05 2008
a(n) = 9/2 +(-1)^floor(n/2)*A010686(n)/2 - 3*A014021(n), n > 1. - R. J. Mathar, Dec 05 2008
a(n) = 9/2 - (3/2)*cos(Pi*n/6) + (1/2)*3^(1/2)*sin(Pi*n/6) - (1/2)*cos(Pi*n/2) - (5/2)*sin(Pi*n/2) - (3/2)*cos(5*Pi*n/6) - (1/2)*3^(1/2)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008

Extensions

Edited by R. J. Mathar, Dec 05 2008