cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A146501 Period 6: repeat [4,8,7,5,1,2].

Original entry on oeis.org

4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2
Offset: 0

Views

Author

Paul Curtz, Oct 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,-1,1},{4,8,7,5},102] (* Ray Chandler, Jul 15 2015 *)
    PadRight[{},120,{4,8,7,5,1,2}] (* Harvey P. Dale, Apr 01 2024 *)

Formula

G.f.: (4+4*x-x^2+2*x^3)/((1-x)*(1+x)*(1-x+x^2)). - Jaume Oliver Lafont, Aug 30 2009

Extensions

Extended by Ray Chandler, Jul 15 2015

A141446 A102055(n) mod 9.

Original entry on oeis.org

1, 2, 1, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5, -2, 4, -1, 4, -5, 2, -8, 4, -4, 7, -5, 8, -5, 4, -7, 1, -5, 5
Offset: 0

Views

Author

Paul Curtz, Aug 07 2008

Keywords

Comments

We compute the positive remainder modulo 9 and subtract 9 if A102055(n) is negative.
Appears to be periodic with period length 18 after the transitional first 3 elements. (This would imply only the same 6 digits appear as found in A141425.)

Crossrefs

Cf. A141430.

Programs

  • Maple
    A102055 := proc(n) local k; if n = 0 then 1; else 1-add(A001469(k),k=1..n) ; end if; end proc:
    A141446 := proc(n) local a; a := A102055(n) ; if a > 0 then a mod  9; else (a mod  9)-9; end if; end proc; # R. J. Mathar, Jul 07 2011

Formula

a(3n) + a(3n+1) + a(3n+2) = 4, 7, -2, -2, -2, 5 ever same six digits?
Showing 1-2 of 2 results.