A141431 Triangle T(n,k) = (k-1)*(3*n-k+1), read by rows.
0, 0, 5, 0, 8, 14, 0, 11, 20, 27, 0, 14, 26, 36, 44, 0, 17, 32, 45, 56, 65, 0, 20, 38, 54, 68, 80, 90, 0, 23, 44, 63, 80, 95, 108, 119, 0, 26, 50, 72, 92, 110, 126, 140, 152, 0, 29, 56, 81, 104, 125, 144, 161, 176, 189, 0, 32, 62, 90, 116, 140, 162, 182, 200, 216, 230, 0, 35, 68, 99, 128, 155, 180, 203, 224, 243, 260, 275
Offset: 1
Examples
Triangle begins as: 0; 0, 5; 0, 8, 14; 0, 11, 20, 27; 0, 14, 26, 36, 44; 0, 17, 32, 45, 56, 65; 0, 20, 38, 54, 68, 80, 90; 0, 23, 44, 63, 80, 95, 108, 119; 0, 26, 50, 72, 92, 110, 126, 140, 152; 0, 29, 56, 81, 104, 125, 144, 161, 176, 189;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
[(k-1)*(3*n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 31 2021
-
Maple
A141431 := proc(n,k) (k-1)*(3*n-k+1) ; end proc: seq(seq(A141431(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 10 2011
-
Mathematica
Table[(k-1)*(3*n-k+1), {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 31 2021 *)
-
Sage
flatten([[(k-1)*(3*n-k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 31 2021
Formula
G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = y^2*x*(x*y-4*y+x+2)/((1-y)^3*(1-x)^2). - R. J. Mathar, Nov 27 2015. x and y swapped to align with standard, 19 Feb 2020
Sum_{k=1..n} T(n, k) = (n-1)*n*(7*n+1)/6 = A245301(n-1). - G. C. Greubel, Mar 31 2021
Extensions
More terms added by G. C. Greubel, Mar 31 2021