cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141431 Triangle T(n,k) = (k-1)*(3*n-k+1), read by rows.

Original entry on oeis.org

0, 0, 5, 0, 8, 14, 0, 11, 20, 27, 0, 14, 26, 36, 44, 0, 17, 32, 45, 56, 65, 0, 20, 38, 54, 68, 80, 90, 0, 23, 44, 63, 80, 95, 108, 119, 0, 26, 50, 72, 92, 110, 126, 140, 152, 0, 29, 56, 81, 104, 125, 144, 161, 176, 189, 0, 32, 62, 90, 116, 140, 162, 182, 200, 216, 230, 0, 35, 68, 99, 128, 155, 180, 203, 224, 243, 260, 275
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 06 2008

Keywords

Examples

			Triangle begins as:
  0;
  0,  5;
  0,  8, 14;
  0, 11, 20, 27;
  0, 14, 26, 36,  44;
  0, 17, 32, 45,  56,  65;
  0, 20, 38, 54,  68,  80,  90;
  0, 23, 44, 63,  80,  95, 108, 119;
  0, 26, 50, 72,  92, 110, 126, 140, 152;
  0, 29, 56, 81, 104, 125, 144, 161, 176, 189;
		

Crossrefs

Columns: A016789 (k=2), A016933 (k=3), A008591 (k=4).
Cf. A245301 (row sums).

Programs

  • Magma
    [(k-1)*(3*n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A141431 := proc(n,k)
            (k-1)*(3*n-k+1) ;
    end proc:
    seq(seq(A141431(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 10 2011
  • Mathematica
    Table[(k-1)*(3*n-k+1), {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 31 2021 *)
  • Sage
    flatten([[(k-1)*(3*n-k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 31 2021

Formula

G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = y^2*x*(x*y-4*y+x+2)/((1-y)^3*(1-x)^2). - R. J. Mathar, Nov 27 2015. x and y swapped to align with standard, 19 Feb 2020
Sum_{k=1..n} T(n, k) = (n-1)*n*(7*n+1)/6 = A245301(n-1). - G. C. Greubel, Mar 31 2021

Extensions

More terms added by G. C. Greubel, Mar 31 2021