A141433 Triangle T(n, k) = (k-1)*(3*n-k), read by rows.
0, 0, 4, 0, 7, 12, 0, 10, 18, 24, 0, 13, 24, 33, 40, 0, 16, 30, 42, 52, 60, 0, 19, 36, 51, 64, 75, 84, 0, 22, 42, 60, 76, 90, 102, 112, 0, 25, 48, 69, 88, 105, 120, 133, 144, 0, 28, 54, 78, 100, 120, 138, 154, 168, 180
Offset: 1
Examples
Triangle begins as: 0; 0, 4; 0, 7, 12; 0, 10, 18, 24; 0, 13, 24, 33, 40; 0, 16, 30, 42, 52, 60; 0, 19, 36, 51, 64, 75, 84; 0, 22, 42, 60, 76, 90, 102, 112; 0, 25, 48, 69, 88, 105, 120, 133, 144; 0, 28, 54, 78, 100, 120, 138, 154, 168, 180;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A304993 (row sums).
Programs
-
Magma
[(k-1)*(3*n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
-
Maple
A141433 := proc(n,m) (m-1)*(3*n-m) ; end proc: seq(seq(A141433(n,m),m=1..n),n=1..18) ; # R. J. Mathar, Sep 14 2011
-
Mathematica
Flatten[Table[(m-1)(3n-m),{n,10},{m,n}]] (* Harvey P. Dale, Feb 04 2016 *)
-
Sage
flatten([[(k-1)*(3*n-k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021
Formula
G.f.: Sum_{k>=0} Sum_{n>=0} T(n,k)*x^n*y^k = y^2*x*(2*x+1-3*y)/((1-y)^3*(x-1)^2). (G.f. for the full array, not just the triangular subspace) - R. J. Mathar, Feb 19 2020
Sum_{k=1..n} T(n, k) = A304993(n-1) = (n-1)*n*(7*n -2)/6. - G. C. Greubel, Apr 01 2021