cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141523 Expansion of (3-2*x-3*x^2)/(1-x-x^2-x^3).

Original entry on oeis.org

3, 1, 1, 5, 7, 13, 25, 45, 83, 153, 281, 517, 951, 1749, 3217, 5917, 10883, 20017, 36817, 67717, 124551, 229085, 421353, 774989, 1425427, 2621769, 4822185, 8869381, 16313335, 30004901, 55187617, 101505853, 186698371, 343391841
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 11 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 1, 1]; [n le 3 select I[n] else Self(n-1)+Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
    
  • Mathematica
    a[0]=3; a[1]=1; a[2]=1; a[n_]:= a[n]=a[n-1]+a[n-2]+a[n-3]; Table[a[n], {n, 0, 40}]
    LinearRecurrence[{1, 1, 1}, {3, 1, 1}, 40] (* Vincenzo Librandi, Oct 17 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[3;1;1])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    my(x='x+O('x^40)); Vec((3-2*x-3*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((3-2*x-3*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

a(0)=3; a(1)=1; a(2)=1; thereafter a(n) = a(n-1) + a(n-2) + a(n-3).
From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: (3-2*x-3*x^2)/(1-x-x^2-x^3).
a(n) = A001644(n) - 2*A000073(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 17 2012