A141545 Numbers k whose abundance is 12: sigma(k) - 2*k = 12.
24, 30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 304, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362
Offset: 1
Keywords
Examples
30 is in the sequence since sigma(30) = sigma(2*3*5) = sigma(2)*sigma(3)*sigma(5) = 3*4*6 = 72 = 2(30)+12. Since this is the second such number whose abundance is 12, a(2) = 30. - _Wesley Ivan Hurt_, Jul 11 2013
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Farideh Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Programs
-
Magma
[n: n in [1..1400] | (SumOfDivisors(n)-2*n) eq 12]; // Vincenzo Librandi, Sep 14 2016
-
Mathematica
lst={};Do[If[n==Plus@@Divisors[n]-n-12,AppendTo[lst,n]],{n,10^4}];Print[lst]; Select[Range[1, 10^4], DivisorSigma[1, #] - 2 # == 12 &] (* Vincenzo Librandi, Sep 14 2016 *)
-
PARI
is(n)=sigma(n)==2*n+12 \\ Charles R Greathouse IV, Feb 21 2017
Comments