cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141545 Numbers k whose abundance is 12: sigma(k) - 2*k = 12.

Original entry on oeis.org

24, 30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 304, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that sigma(k) = 2k + 12. - Wesley Ivan Hurt, Jul 11 2013
Any term x = a(m) can be combined with any term y = A141549(n) to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2. Although this property is a necessary condition for two numbers to be amicable, it is not a sufficient one. So far, these two sequences have not produced an amicable pair. However, if one is ever found, then it will exhibit y-x = 12. - Timothy L. Tiffin, Sep 13 2016
From Tomohiro Yamada, Jan 01 2023: (Start)
6p belongs to this sequence if p > 3 is prime since sigma(6p) = 12(p + 1) = 12p + 12. Moreover, 2^m * (2^(m+1) - 13) is also a term of this sequence if 2^(m+1) - 13 is prime (m+1 is a term of A096818) since sigma(2^m * (2^(m+1) - 13)) = (2^(m+1) + 1) * (2^(m+1) - 13) = 2^(m+1) * (2^(m+1) - 13) + 12. So 24, 304, 127744, 33501184, and 8589082624 also belong to this sequence.
Problem: is 54 the only term of this sequence which is of neither type given above? (End)

Examples

			30 is in the sequence since sigma(30) = sigma(2*3*5) = sigma(2)*sigma(3)*sigma(5) = 3*4*6 = 72 = 2(30)+12.  Since this is the second such number whose abundance is 12, a(2) = 30. - _Wesley Ivan Hurt_, Jul 11 2013
		

Crossrefs

Cf. A000203, A005101, A141549 (deficiency 12).
Cf. A076496 (sigma(k) - a*k = 12).

Programs

  • Magma
    [n: n in [1..1400] | (SumOfDivisors(n)-2*n) eq 12]; // Vincenzo Librandi, Sep 14 2016
    
  • Mathematica
    lst={};Do[If[n==Plus@@Divisors[n]-n-12,AppendTo[lst,n]],{n,10^4}];Print[lst];
    Select[Range[1, 10^4], DivisorSigma[1, #] - 2 # == 12 &] (* Vincenzo Librandi, Sep 14 2016 *)
  • PARI
    is(n)=sigma(n)==2*n+12 \\ Charles R Greathouse IV, Feb 21 2017