A141548 Numbers n whose deficiency is 6.
7, 15, 52, 315, 592, 1155, 2102272, 815634435
Offset: 1
Examples
a(1) = 7, since 2*7 - sigma(7) = 14 - 8 = 6. - _Timothy L. Tiffin_, Sep 13 2016
Links
- Gianluca Amato, Maximilian Hasler, Giuseppe Melfi, Maurizio Parton, Primitive weird numbers having more than three distinct prime factors, Riv. Mat. Univ. Parma, 7(1), (2016), 153-163, arXiv:1803.00324 [math.NT], 2018.
Crossrefs
Cf. A087485 (odd terms).
Cf. A000203, A033880, A005100; A191363 (deficiency 2), A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A101223 (deficiency 10), A141549 (deficiency 12), A141550 (deficiency 14), A125248 (deficiency 16), A223608 (deficiency 18), A223607 (deficiency 20).
Cf. A087167 (abundance 6).
Programs
-
Magma
[n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -6]; // Vincenzo Librandi, Sep 14 2016
-
Mathematica
lst={};Do[If[n==Plus@@Divisors[n]-n+6,AppendTo[lst,n]],{n,10^4}];Print[lst]; Select[Range[1, 10^8], DivisorSigma[1, #] - 2 # == - 6 &] (* Vincenzo Librandi, Sep 14 2016 *)
-
PARI
is(n)=sigma(n)==2*n-6 \\ Charles R Greathouse IV, Apr 23 2015, corrected by M. F. Hasler, Jul 18 2016
Extensions
a(8) from Donovan Johnson, Dec 08 2011
Comments