cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141555 Primes of the form c(p(n)) + p(c(n)), where c(n) = n-th composite and p(n) = n-th prime.

Original entry on oeis.org

13, 29, 37, 59, 127, 137, 151, 163, 227, 263, 271, 337, 467, 563, 683, 701, 727, 809, 941, 967, 1069, 1187, 1213, 1279, 1607, 1867, 1901, 1913, 1993, 2099, 2137, 2473, 2791, 2819, 2927, 3049, 3359, 3571, 3761, 3823, 4027, 4093, 4297, 4643, 4721, 4831
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 14 2008

Keywords

Examples

			For n= 1, c(1) = 4, p(1) = 2; c(2)  + p(4)  =  6+ 7=  13 = a(1).
For n= 2, c(2) = 6, p(2) = 3; c(3)  + p(6)  =  8+13=  21 (nonprime).
For n= 3, c(3) = 8, p(3) = 5; c(5)  + p(8)  = 10+19=  29 = a(2).
For n= 4, c(4) = 9, p(4) = 7; c(7)  + p(9)  = 14+23=  37 = a(3).
For n= 5, c(5) =10, p(5) =11; c(11) + p(10) = 20+29=  49 (nonprime).
For n= 6, c(6) =12, p(6) =13; c(13) + p(12) = 22+37=  59 = a(4).
		

Crossrefs

Programs

  • PARI
    p(n) = prime(n); \\ A000040
    c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808
    select(isprime, vector(70, n, c(p(n)) + p(c(n)))) \\ Michel Marcus, Jan 29 2023

Extensions

Edited and extended by Ray Chandler, Aug 19 2008