cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141556 Composites of the form c(p(n)) + p(c(n)), where c(n) = n-th composite and p(n) = n-th prime.

Original entry on oeis.org

21, 49, 70, 77, 88, 105, 117, 176, 185, 192, 205, 236, 247, 292, 301, 309, 323, 345, 365, 394, 405, 411, 427, 435, 455, 478, 490, 501, 513, 538, 554, 567, 585, 622, 636, 640, 655, 675, 713, 747, 759, 767, 785, 794, 833, 845, 854, 862, 891, 905, 921, 933, 978
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 14 2008

Keywords

Examples

			For n=1, c(1)= 4, p(1)= 2; c(2)  + p(4)  =  6 +  7 = 13 (prime).
For n=2, c(2)= 6, p(2)= 3; c(3)  + p(6)  =  8 + 13 = 21 = a(1).
For n=3, c(3)= 8, p(3)= 5; c(5)  + p(8)  = 10 + 19 = 29 (prime).
For n=4, c(4)= 9, p(4)= 7; c(7)  + p(9)  = 14 + 23 = 37 (prime).
For n=5, c(5)=10, p(5)=11; c(11) + p(10) = 20 + 29 = 49 = a(2).
For n=6, c(6)=12, p(6)=13; c(13) + p(12) = 22 + 37 = 59 (prime).
For n=7, c(7)=14, p(7)=17; c(17) + p(14) = 27 + 43 = 70 = a(3).
		

Crossrefs

Programs

  • PARI
    p(n) = prime(n); \\ A000040
    c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808
    select(x->(!isprime(x)), vector(70, n, c(p(n)) + p(c(n)))) \\ Michel Marcus, Jan 29 2023

Extensions

Edited and corrected by Ray Chandler, Aug 19 2008
Showing 1-1 of 1 results.