cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A327371 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
     1;
     1,    0;
     1,    0,   1;
     2,    0,   2,   0;
     5,    1,   3,   1,  1;
    16,    6,   7,   2,  3,  0;
    78,   35,  25,   8,  7,  2,  1;
   588,  260, 126,  40, 20,  6,  4, 0;
  8047, 2934, 968, 263, 92, 25, 13, 3, 1;
  ...
		

Crossrefs

Row sums are A000088.
Row sums without the first column are A141580.
Columns k = 0..2 are A004110, A325115, A325125.
Column k = n is A059841.
Column k = n - 1 is A028242.
The labeled version is A327369.
The covering case is A327372.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
    T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
    my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021

Formula

Column-wise partial sums of A327372.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019

A327362 Number of labeled connected graphs covering n vertices with at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14646, 813813, 82060392, 15251272983, 5312295240010, 3519126783483377, 4487168285715524124, 11116496280631563128723, 53887232400918561791887118, 513757147287101157620965656285, 9668878162669182924093580075565776
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A graph is covering if the vertex set is the union of the edge set, so there are no isolated vertices.

Crossrefs

The non-connected version is A327227.
The non-covering version is A327364.
Graphs with endpoints are A245797.
Connected covering graphs are A001187.
Connected graphs with bridges are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Inverse binomial transform of A327364.
a(n) = A001187(n) - A059166(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327364 Number of labeled simple graphs with n vertices, a connected edge-set, and at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 6, 46, 655, 17991, 927416, 89009740, 16020407709, 5468601546685, 3578414666656214, 4529751815161579194, 11175105490563109463875, 54043272967471942825421219, 514566625051705610110588073460, 9677104749727084630538798805505880
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			The a(4) = 46 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}
  {13}  {12,14}  {12,13,24}  {12,13,14,24}
  {14}  {12,23}  {12,13,34}  {12,13,14,34}
  {23}  {12,24}  {12,14,23}  {12,13,23,24}
  {24}  {13,14}  {12,14,34}  {12,13,23,34}
  {34}  {13,23}  {12,23,24}  {12,14,23,24}
        {13,34}  {12,23,34}  {12,14,24,34}
        {14,24}  {12,24,34}  {12,23,24,34}
        {14,34}  {13,14,23}  {13,14,23,34}
        {23,24}  {13,14,24}  {13,14,24,34}
        {23,34}  {13,23,24}  {13,23,24,34}
        {24,34}  {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
		

Crossrefs

The covering case is A327362.
Graphs with endpoints are A245797.
Graphs with connected edge-set are A287689.
Connected graphs with bridges are A327071.
Covering graphs with endpoints are A327227.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={my(x=x + O(x*x^n)); Vec(serlaplace(exp(x)*(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x))^k/k!)))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Binomial transform of A327362.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A324693 Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.

Original entry on oeis.org

0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2019

Keywords

Crossrefs

Column k = 1 of A294217.
A diagonal of A263293.
The labeled version is A327227.
The generalization to set-systems is A327335, with covering case A327230.
Unlabeled covering graphs are A002494.

Formula

a(n) = A002494(n) - A261919(n).
First differences of A141580. - Andrew Howroyd, Jan 11 2021

A327379 Number of labeled non-mating-type graphs with n vertices.

Original entry on oeis.org

0, 1, 4, 32, 436, 11292, 545784, 49826744, 8647819328, 2876819527744, 1848998498567936, 2312324942899031040, 5659406410382924819712, 27230994319259100289485568, 258465217554621196991878652416, 4851552662579126853087143276476928
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A mating-type graph has all different rows in its adjacency matrix.

Crossrefs

The unlabeled version is A141580.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!UnsameQ@@AdjacencyMatrix[Graph[Range[n],#]]&]],{n,5}]
  • PARI
    a(n) = {2^binomial(n,2) - sum(k=0, n, stirling(n, k, 1)*2^binomial(k,2))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A006125(n) - A006024(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A240168 T(n,k) is the number of unlabeled graphs of n vertices and k edges that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 5, 4, 2, 1, 1, 2, 4, 8, 13, 15, 16, 11, 5, 2, 1, 1, 2, 4, 9, 19, 35, 55, 75, 83, 72, 51, 29, 13, 5, 2, 1, 1, 2, 4, 10, 22, 50, 105, 196, 338, 511, 649, 695, 627, 473, 304, 172, 83, 35, 14, 5, 2, 1
Offset: 1

Views

Author

Chai Wah Wu, Aug 02 2014

Keywords

Comments

The length of the rows are 1,1,2,4,7,11,16,22,...: (n-1)*(n-2)/2 + 1 = A152947(n).
T(n,k) = 0 if k > (n-1)*(n-2)/2 + 1. (Cf. A245796)

Examples

			First few rows of irregular triangle are:
..0
..1
..1....1
..1....2....2....1
..1....2....3....5....4....2....1
..1....2....4....8...13...15...16...11....5....2....1
..1....2....4....9...19...35...55...75...83...72...51...29...13....5....2....1
...
		

Crossrefs

Cf. A245796. Sum of n-th row is equal to A141580(n).
Showing 1-6 of 6 results.