A141590 a(n) = numerator of Bernoulli(2*n)/(2*n + 1)!. Bisection of A120082.
1, 1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 0
Examples
Note that a(34) = -125235502160125163977598011460214000388469 but A255505(34) = -4633713579924631067171126424027918014373353.
Links
- Peter Luschny, Table of n, a(n) for n = 0..300
- Kevin Acres and David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018.
Programs
-
Magma
A141590:= func< n | Numerator(BernoulliNumber(2*n)/Factorial(2*n+1)) >; [A141590(n): n in [0..35]]; // G. C. Greubel, Sep 16 2024
-
Maple
A141590 := proc(n) A120082(2*n) end: seq(A141590(n), n=0..30) ; # R. J. Mathar, Sep 03 2009 seq(numer(bernoulli(2*n)/(2*n+1)!), n=0..34); # Peter Luschny, Dec 03 2022
-
Mathematica
Table[Numerator[BernoulliB[2*n]/(2*n+1)!], {n,0,35}] (* G. C. Greubel, Sep 16 2024 *)
-
SageMath
def A141590(n): return numerator(bernoulli(2*n)/factorial(2*n+1)) [A141590(n) for n in range(36)] # G. C. Greubel, Sep 16 2024
Formula
a(n) = A120082(2*n).
Extensions
Edited and extended by R. J. Mathar, Sep 03 2009
Edited by Peter Luschny, Dec 03 2022
Comments