cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111008 a(n) = A000367(n)/A141590(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 629, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 1003, 481, 53, 1, 5, 7, 19, 29, 59, 1, 61, 2077, 103, 1, 65, 11, 67, 17, 23, 259, 71, 1, 73, 37, 25, 2489, 77
Offset: 0

Views

Author

Paul Curtz, Aug 25 2008

Keywords

Crossrefs

See A141517.
Cf. A300711.

Programs

  • Maple
    A120082 := proc(n) local b; if n = 0 then b := 1 ; elif n = 1 then b := -1/4 ; elif type(n,'odd') then b := 0; else b := bernoulli(n)/(n+1)! ; fi; numer(b) ; end:
    A141590 := proc(n) A120082(2*n) ; end: A000367 := proc(n) numer(bernoulli(2*n)) ; end:
    A111008 := proc(n) A000367(n)/A141590(n) ; end: seq(A111008(n),n=0..120) ; # R. J. Mathar, Sep 03 2009
  • PARI
    upto(N)=bernvec(N);forstep(n=0,2*N,2,print1(gcd(numerator(bernfrac(n)), (n+1)!),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Extensions

Edited and extended by R. J. Mathar, Sep 03 2009

A001067 Numerator of Bernoulli(2*n)/(2*n).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 1

Views

Author

N. J. A. Sloane, Richard E. Borcherds (reb(AT)math.berkeley.edu)

Keywords

Comments

It was incorrectly claimed that a(n) is "also numerator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(2*n*n!)"; actually, the numerators of these fractions and the numerators of "modified Bernoulli numbers" (see A057868 for details) differ from each other and from this sequence. - Andrey Zabolotskiy, Dec 03 2022
Ramanujan incorrectly conjectured that the sequence contains only primes (and 1). - Jud McCranie. See A112548, A119766.
a(n) = A046968(n) if n < 574; a(574) = 37 * A046968(574). - Michael Somos, Feb 01 2004
Absolute values give denominators of constant terms of Fourier series of meromorphic modular forms E_k/Delta, where E_k is the normalized k th Eisenstein series [cf. Gunning or Serre references] and Delta is the normalized unique weight-twelve cusp form for the full modular group (the generating function of Ramanujan's tau function.) - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
|a(n)| is a product of powers of irregular primes (A000928), with the exception of n = 1,2,3,4,5,7. - Peter Luschny, Jul 28 2009
Conjecture: If there is a prime p such that 2*n+1 < p and p divides a(n), then p^2 does not divide a(n). This conjecture is true for p < 12 million. - Seiichi Manyama, Jan 21 2017

Examples

			The sequence Bernoulli(2*n)/(2*n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ...
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • R. Kanigel, The Man Who Knew Infinity, pp. 91-92.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, p. 93.

Crossrefs

Similar to but different from A046968. See A090495, A090496.
Denominators given by A006953.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n)));  # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A001067_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(numer((2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end:
    A001067_list(21); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n)], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
  • PARI
    {a(n) = if( n<1, 0, numerator( bernfrac(2*n) / (2*n)))}; /* Michael Somos, Feb 01 2004 */
    
  • Sage
    @CachedFunction
    def S(n, k) :
        if k == 0 :
            if n == 0 : return 1
            else: return 0
        return S(n, k-1) + S(n-1, n-k)
    def BernoulliDivN(n) :
        if n == 0 : return 1
        return (-1)^n*S(2*n-1,2*n-1)/(4^n-16^n)
    [BernoulliDivN(n).numerator() for n in (1..22)]
    # Peter Luschny, Jul 08 2012
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n)) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = - Bernoulli(2*n)/(2*n).
G.f.: numerators of coefficients of z^(2*n) in z/(exp(z)-1). - Benoit Cloitre, Jun 02 2003
For 2 <= k <= 1000 and k != 7, the 2-order of the full constant term of E_k/Delta = 3 + ord_2(k - 7). - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
G.f. for Bernoulli(2*n)/(2*n) = a(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n))*integral(log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 18 2011
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012
|a(n)| = numerator of Integral_{r=0..1} HurwitzZeta(1-n, r)^2 dr. More general: |Bernoulli(2*n)| = binomial(2*n,n)*n^2*I(n) for n >= 1 where I(n) denotes the integral. - Peter Luschny, May 24 2015

A006953 a(n) = denominator of Bernoulli(2n)/(2n).

Original entry on oeis.org

12, 120, 252, 240, 132, 32760, 12, 8160, 14364, 6600, 276, 65520, 12, 3480, 85932, 16320, 12, 69090840, 12, 541200, 75852, 2760, 564, 2227680, 132, 6360, 43092, 6960, 708, 3407203800, 12, 32640, 388332, 120, 9372, 10087262640
Offset: 1

Views

Author

Keywords

Comments

a(n) are alternately divisible by 12 and 120, a(n)/(12, 120, 12, 120, 12, 120, ...) = 1, 1, 21, 2, 11, 273, ... . - Paul Curtz, Sep 13 2011 and Michel Marcus, Jan 05 2013
A141590/(2 before a(n+1)) = 1/2 + 1/12 - 1/120 + 1/252 is an old semi-convergent series for Euler's constants A001620 ("2 before a" meaning that one term, namely 2, is inserted before the sequence). This series is discussed in details in reference [Blagouchine, 2016], Sect. 3 and Fig. 3. - Paul Curtz, Sep 13 2011, Michel Marcus, Jan 05 2013 and Iaroslav V. Blagouchine, Sep 16 2015
a(n) = A006863(n)/2. - Michel Marcus, Jan 05 2013

Examples

			Sequence Bernoulli(2n)/(2n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ... .
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Numerators are given by A001067.

Programs

  • GAP
    List([1..40], n-> DenominatorRat(Bernoulli(2*n)/(2*n)) ); # G. C. Greubel, Sep 19 2019
  • Magma
    [Denominator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A006953_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(denom((-1)^i*(2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end;
    A006953_list(35); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[Denominator[BernoulliB[2n]/(2n)],{n,40}] (* Harvey P. Dale, Jan 12 2022 *)
  • PARI
    a(n) = denominator(bernfrac(2*n)/(2*n)); \\ Michel Marcus, Apr 21 2016
    
  • Sage
    [denominator(bernoulli(2*n)/(2*n)) for n in (1..40)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = -Bernoulli(2*n)/(2*n).
G.f. for Bernoulli(2*n)/(2*n) = A001067(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n)) * Integral_{t=0..1} log(1-1/t)^(2*n) dt. - Gerry Martens, May 18 2011
E.g.f.: a(n) = denominator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Jan 12 2022

A241601 Largest divisor of A246006(n) whose prime factors are all >= n+2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 61, 1, 277, 1, 50521, 691, 41581, 1, 199360981, 3617, 228135437, 43867, 2404879675441, 174611, 14814847529501, 77683, 69348874393137901, 236364091, 238685140977801337, 657931, 4087072509293123892361, 3392780147, 454540704683713199807
Offset: 0

Views

Author

Eric Chen, Dec 15 2014

Keywords

Comments

Notice: Not all a(n) are 1 or primes, the first example is a(11) = 50521, it equals 19*2659.
a(2n) is a product of powers of Bernoulli irregular primes (A000928), with the exception of n = 0,1,2,3,4,5,7.
a(2n+1) is a product of powers of Euler irregular primes (A120337), with the exception of n = 0,1,2.
Conjectures: All terms are squarefree, and there are infinitely many n such that a(n) is prime.
a(n) = 1 iff n is in the set {0, 1, 2, 3, 4, 5, 6, 8, 10, 14}.
a(n) is prime for n = {7, 9, 12, 16, 17, 18, 26, 34, 36, 38, 39, 42, 49, 74, 114, 118, ...}.
All prime factors of a(n) are irregular primes (Bernoulli or Euler) and with an irregular pair to n: (61, 7), (277, 9), (19, 11), (2659, 11), (691, 12), (43, 13), (967, 13), (47, 15), (4241723, 15), (3617, 16), (228135437, 17), (43867, 18), (79, 19), (349, 19), (84224971, 19), ...
Number of ns such that a prime p divides a(n) is the irregular index of p, for example, 67 divides both a(27) and a(58), so it has irregular index two.
a(149) is the first a(n) which is not completely factored (with a 202-digit composite remaining).

Crossrefs

Programs

  • Mathematica
    b[n_] := Numerator[BernoulliB[2 n]/(2 n)];
    c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]];
    a[0] = 1; a[n_] := If[EvenQ[n], b[n/2] // Abs, c[(n-1)/2]];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Jul 03 2019 *)

Formula

a(2n) = |A001067(n)| = |A120082(2n)| = |A141590(n)| = |A060054(n)|.
a(2n+1) = A091912(n).

A255505 Numerator of Bernoulli(2n)/(2n!).

Original entry on oeis.org

1, 1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 0

Views

Author

Jean-François Alcover, Feb 24 2015

Keywords

Comments

This sequence is different from A001067 or A046968 or A141590, at least at a(52).

Examples

			The sequence Bernoulli(2n)/(2n!) (n >= 0) begins 1/2, 1/12, -1/120, 1/504, -1/1440, 1/3168, -691/3931200, 1/8640, -3617/41126400, ...
		

Crossrefs

Cf. A000367, A001067, A046968, A141590, A255506 (denominator).

Programs

  • Magma
    [Numerator(Bernoulli(2*n)/(2*Factorial(n))):n in [0..30]]; // Vincenzo Librandi, Feb 24 2015
    
  • Mathematica
    Table[Numerator[BernoulliB[2 n]/(2 n!)], {n, 0, 25}]
  • PARI
    a(n) = numerator(bernfrac(2*n)/(2*n!)); \\ Michel Marcus, Feb 24 2015
    
  • Sage
    [numerator(bernoulli(2*n)/(2*factorial(n))) for n in (0..25)] # Bruno Berselli, Feb 24 2015

A231273 Numerator of zeta(4n)/(zeta(2n) * Pi^(2n)).

Original entry on oeis.org

1, 1, 1, 691, 3617, 174611, 236364091, 3392780147, 7709321041217, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 5609403368997817686249127547, 61628132164268458257532691681, 354198989901889536240773677094747
Offset: 0

Views

Author

Leo Depuydt, Nov 07 2013

Keywords

Comments

Integer component of the numerator of a close variant of Euler's infinite prime product zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)-1), namely with all minus signs changed into plus signs, as follows: zeta(4n)/zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)+1). The transcendental component is Pi^(2n).
For a detailed account of the results, including proof and relation to the zeta function, see Links for the PDF file submitted as supporting material.
The reference to Apostol is to a discussion of the equivalence of 1) zeta(2s)/zeta(s) and 2) a related infinite prime product, that is, Product_{sigma>1} prime(n)^s/(prime(n)^s + 1), with s being a complex variable such that s = sigma + i*t where sigma and t are real (following Riemann), using a type of proof different from the one posted below involving zeta(4n)/zeta(2n). On this, see also Hardy and Wright cited below. - Leo Depuydt, Nov 22 2013, Nov 27 2013
The background of the sequence is now described in the link below to L. Depuydt, The Prime Sequence ... . - Leo Depuydt, Aug 22 2014
From Robert Israel, Aug 22 2014: (Start)
Numerator of (-1)^n*B(4*n)*4^n*(2*n)!/(B(2*n)*(4*n)!), where B(n) are the Bernoulli numbers (see A027641 and A027642).
Not the same as abs(A001067(2*n)): they differ first at n=17.
(End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, 1960, p. 255.

Crossrefs

Cf. A231327 (corresponding denominator).
Cf. A114362 and A114363 (closely related results).
Cf. A001067, A046968, A046988, A098087, A141590, A156036 (same number sequence, though in various transformations (alternation of signs, intervening numbers, and so on)).

Programs

  • Maple
    seq(numer((-1)^n*bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
  • Mathematica
    Numerator[Table[Zeta[4n]/(Zeta[2n] * Pi^(2n)), {n, 0, 15}]] (* T. D. Noe, Nov 18 2013 *)

A231327 Denominator of rational component of zeta(4n)/zeta(2n).

Original entry on oeis.org

1, 15, 105, 675675, 34459425, 16368226875, 218517792968475, 30951416768146875, 694097901592400930625, 23383376494609715287281703125, 2289686345687357378035370971875, 219012470258383844016431785453125, 4791965046290912124048163518904807546875
Offset: 0

Views

Author

Leo Depuydt, Nov 07 2013

Keywords

Comments

Denominator of a close variant of Euler's infinite prime product zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)-1), namely with all minus signs changed into plus signs, as follows: zeta(4n)/zeta(2n) = Product_{k>=1} prime(k)^(2n)/(prime(k)^(2n)+1).
For a detailed account of the results in question, including proof and relation to the zeta function, see the PDF file submitted as supporting material in A231273.
The reference to Apostol below is a discussion of the equivalence of 1) zeta(2s)/zeta(s) and 2) a related infinite prime product, that is, Product_{sigma>1} prime(n)^s/(prime(n)^s + 1), with s being a complex variable such that s = sigma + i*t where sigma and t are real (following Riemann), using a type of proof different from the one posted below involving zeta(4n)/zeta(2n). - Leo Depuydt, Nov 22 2013
Denominator of B(4*n)*4^n*(2*n)!/(B(2*n)*(4*n)!) where B(n) are the Bernoulli numbers (see A027641 and A027642). - Robert Israel, Aug 22 2014

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.

Crossrefs

Cf. A231273 (the corresponding numerator).
Cf. A114362 and A114363 (closely related results).
Cf. A001067, A046968, A046988, A098087, A141590, and A156036 (same number sequence as found in numerator, though in various transformations (alternation of sign, intervening numbers, and so on)).
Cf. A027641 and A027642.

Programs

  • Maple
    seq(denom(bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
  • Mathematica
    Denominator[Table[Zeta[4 n]/Zeta[2 n], {n, 0, 15}]] (* T. D. Noe, Nov 15 2013 *)

A057868 Denominator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(4*n*(2*n)!).

Original entry on oeis.org

48, 5760, 362880, 19353600, 958003200, 31384184832000, 2092278988800, 341459930972160000, 183927391818153984000, 32114306507931648000000, 620448401733239439360000, 81303558563123696133734400000, 9678995067038535254016000000, 2122022878497528469090467840000000
Offset: 1

Views

Author

Keywords

Comments

Note that Weisstein gives the formula b(n) = B(n)/(2*n*n!), and a(n) is the denominator of b(2*n). Numerators seem to be A141590 (not A001067 or A046968 or A255505). - Andrey Zabolotskiy, Dec 03 2022

Examples

			The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

Crossrefs

Numerators seem to be A141590.
Cf. A001067.

Programs

  • Maple
    seq(denom(bernoulli(2*n)/((4*n)*(2*n)!)), n = 1..14); # Peter Luschny, Dec 03 2022
  • Mathematica
    a[n_] := Denominator[ BernoulliB[2n] / (8n^2*(2n-1)!)];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jun 07 2012 *)

Extensions

Name edited by Andrey Zabolotskiy, Dec 03 2022
Showing 1-8 of 8 results.