cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001067 Numerator of Bernoulli(2*n)/(2*n).

Original entry on oeis.org

1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 1

Views

Author

N. J. A. Sloane, Richard E. Borcherds (reb(AT)math.berkeley.edu)

Keywords

Comments

It was incorrectly claimed that a(n) is "also numerator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(2*n*n!)"; actually, the numerators of these fractions and the numerators of "modified Bernoulli numbers" (see A057868 for details) differ from each other and from this sequence. - Andrey Zabolotskiy, Dec 03 2022
Ramanujan incorrectly conjectured that the sequence contains only primes (and 1). - Jud McCranie. See A112548, A119766.
a(n) = A046968(n) if n < 574; a(574) = 37 * A046968(574). - Michael Somos, Feb 01 2004
Absolute values give denominators of constant terms of Fourier series of meromorphic modular forms E_k/Delta, where E_k is the normalized k th Eisenstein series [cf. Gunning or Serre references] and Delta is the normalized unique weight-twelve cusp form for the full modular group (the generating function of Ramanujan's tau function.) - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
|a(n)| is a product of powers of irregular primes (A000928), with the exception of n = 1,2,3,4,5,7. - Peter Luschny, Jul 28 2009
Conjecture: If there is a prime p such that 2*n+1 < p and p divides a(n), then p^2 does not divide a(n). This conjecture is true for p < 12 million. - Seiichi Manyama, Jan 21 2017

Examples

			The sequence Bernoulli(2*n)/(2*n) (n >= 1) begins 1/12, -1/120, 1/252, -1/240, 1/132, -691/32760, 1/12, -3617/8160, ...
The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 259, (6.3.18) and (6.3.19); also p. 810.
  • L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • R. Kanigel, The Man Who Knew Infinity, pp. 91-92.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973, p. 93.

Crossrefs

Similar to but different from A046968. See A090495, A090496.
Denominators given by A006953.

Programs

  • GAP
    List([1..25], n-> NumeratorRat(Bernoulli(2*n)/(2*n)));  # G. C. Greubel, Sep 19 2019
  • Magma
    [Numerator(Bernoulli(2*n)/(2*n)):n in [1..40]]; // Vincenzo Librandi, Sep 17 2015
    
  • Maple
    A001067_list := proc(n) 1/(1-1/exp(z)); series(%,z,2*n+4);
    seq(numer((2*i+1)!*coeff(%,z,2*i+1)),i=0..n) end:
    A001067_list(21); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[ Numerator[ BernoulliB[2n]/(2n)], {n, 1, 22}] (* Robert G. Wilson v, Feb 03 2004 *)
  • PARI
    {a(n) = if( n<1, 0, numerator( bernfrac(2*n) / (2*n)))}; /* Michael Somos, Feb 01 2004 */
    
  • Sage
    @CachedFunction
    def S(n, k) :
        if k == 0 :
            if n == 0 : return 1
            else: return 0
        return S(n, k-1) + S(n-1, n-k)
    def BernoulliDivN(n) :
        if n == 0 : return 1
        return (-1)^n*S(2*n-1,2*n-1)/(4^n-16^n)
    [BernoulliDivN(n).numerator() for n in (1..22)]
    # Peter Luschny, Jul 08 2012
    
  • Sage
    [numerator(bernoulli(2*n)/(2*n)) for n in (1..25)] # G. C. Greubel, Sep 19 2019
    

Formula

Zeta(1-2*n) = - Bernoulli(2*n)/(2*n).
G.f.: numerators of coefficients of z^(2*n) in z/(exp(z)-1). - Benoit Cloitre, Jun 02 2003
For 2 <= k <= 1000 and k != 7, the 2-order of the full constant term of E_k/Delta = 3 + ord_2(k - 7). - Barry Brent (barrybrent(AT)iphouse.com), Jun 01 2009
G.f. for Bernoulli(2*n)/(2*n) = a(n)/A006953(n): (-1)^n/((2*Pi)^(2*n)*(2*n))*integral(log(1-1/t)^(2*n) dt,t=0,1). - Gerry Martens, May 18 2011
E.g.f.: a(n) = numerator((2*n+1)!*[x^(2*n+1)](1/(1-1/exp(x)))). - Peter Luschny, Jul 12 2012
|a(n)| = numerator of Integral_{r=0..1} HurwitzZeta(1-n, r)^2 dr. More general: |Bernoulli(2*n)| = binomial(2*n,n)*n^2*I(n) for n >= 1 where I(n) denotes the integral. - Peter Luschny, May 24 2015

A141590 a(n) = numerator of Bernoulli(2*n)/(2*n + 1)!. Bisection of A120082.

Original entry on oeis.org

1, 1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691, -2530297234481911294093
Offset: 0

Views

Author

Paul Curtz, Aug 20 2008

Keywords

Comments

Numerators of the Taylor expansion coefficients of the Debye function D(1,x) at the even powers of x.

Examples

			Note that a(34) = -125235502160125163977598011460214000388469 but A255505(34) = -4633713579924631067171126424027918014373353.
		

Crossrefs

Programs

Formula

a(n) = A120082(2*n).

Extensions

Edited and extended by R. J. Mathar, Sep 03 2009
Edited by Peter Luschny, Dec 03 2022

A057868 Denominator of "modified Bernoulli number" b(2n) = Bernoulli(2*n)/(4*n*(2*n)!).

Original entry on oeis.org

48, 5760, 362880, 19353600, 958003200, 31384184832000, 2092278988800, 341459930972160000, 183927391818153984000, 32114306507931648000000, 620448401733239439360000, 81303558563123696133734400000, 9678995067038535254016000000, 2122022878497528469090467840000000
Offset: 1

Views

Author

Keywords

Comments

Note that Weisstein gives the formula b(n) = B(n)/(2*n*n!), and a(n) is the denominator of b(2*n). Numerators seem to be A141590 (not A001067 or A046968 or A255505). - Andrey Zabolotskiy, Dec 03 2022

Examples

			The sequence of modified Bernoulli numbers begins 1/48, -1/5760, 1/362880, -1/19353600, 1/958003200, -691/31384184832000, ...
		

Crossrefs

Numerators seem to be A141590.
Cf. A001067.

Programs

  • Maple
    seq(denom(bernoulli(2*n)/((4*n)*(2*n)!)), n = 1..14); # Peter Luschny, Dec 03 2022
  • Mathematica
    a[n_] := Denominator[ BernoulliB[2n] / (8n^2*(2n-1)!)];
    Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Jun 07 2012 *)

Extensions

Name edited by Andrey Zabolotskiy, Dec 03 2022

A255506 Denominator of Bernoulli(2n)/(2n!).

Original entry on oeis.org

2, 12, 120, 504, 1440, 3168, 3931200, 8640, 41126400, 579156480, 2395008000, 1001548800, 2615348736000, 5748019200, 21670032384000, 7491404919398400, 21341245685760000, 251073478656000, 24574743184592240640000, 76828484468736000, 65834328341259878400000
Offset: 0

Views

Author

Jean-François Alcover, Feb 24 2015

Keywords

Examples

			The sequence Bernoulli(2n)/(2n!) (n >= 0) begins 1/2, 1/12, -1/120, 1/504, -1/1440, 1/3168, -691/3931200, 1/8640, -3617/41126400, ...
		

Crossrefs

Cf. A255505 (numerator).

Programs

  • Magma
    [Denominator(Bernoulli(2*n)/(2*Factorial(n))): n in [0..25]]; // Vincenzo Librandi, Feb 24 2015
    
  • Mathematica
    Table[Denominator[BernoulliB[2 n]/(2 n!)], {n, 0, 25}]
  • PARI
    a(n) = denominator(bernfrac(2*n)/(2*n!)); \\ Michel Marcus, Feb 24 2015
    
  • Sage
    [denominator(bernoulli(2*n)/(2*factorial(n))) for n in (0..25)] # Bruno Berselli, Feb 24 2015
Showing 1-4 of 4 results.