A141611 Triangle read by rows: T(n, k) = (n-k+1)*(k+1)*binomial(n, k).
1, 2, 2, 3, 8, 3, 4, 18, 18, 4, 5, 32, 54, 32, 5, 6, 50, 120, 120, 50, 6, 7, 72, 225, 320, 225, 72, 7, 8, 98, 378, 700, 700, 378, 98, 8, 9, 128, 588, 1344, 1750, 1344, 588, 128, 9, 10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10, 11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 3, 8, 3; 4, 18, 18, 4; 5, 32, 54, 32, 5; 6, 50, 120, 120, 50, 6; 7, 72, 225, 320, 225, 72, 7; 8, 98, 378, 700, 700, 378, 98, 8; 9, 128, 588, 1344, 1750, 1344, 588, 128, 9; 10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10; 11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11; ... From _Peter Bala_, Mar 06 2017: (Start) Factorization as a square array /1 \ /1 2 3 4...\ /1 2 3 4...\ |2 2 | | 2 6 12...| |2 8 12 32...| |3 6 3 |*| 3 12...|=|3 18 54 120...| |4 12 12 4 | | 4...| |4 32 120 320...| |... | | | |... | (End)
Links
Programs
-
Magma
A141611:= func< n,k | (k+1)*(n-k+1)*Binomial(n,k) >; [A141611(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 22 2024
-
Mathematica
T[n_, m_]:= (n-m+1)*(m+1)*Binomial[n,m]; Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
PARI
T(n,m)=(n - m + 1)*(m + 1)*binomial(n, m) \\ Charles R Greathouse IV, Feb 15 2017
-
SageMath
def A141611(n,k): return (k+1)*(n-k+1)*binomial(n,k) flatten([[A141611(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Sep 22 2024
Formula
T(n, k) = (k+1)*(n-k+1)*binomial(n,k).
Sum_{k=0..n} T(n, k) = A007466(n+1) (row sums).
O.g.f.: (1 - (1 + t)*x + 2*t*x^2)/(1 - (1 + t)*x)^3 = 1 + (2 + 2*t)*x + (3 + 8*t + 3*t^2)*x^2 + (4 + 18*t + 18*t^2 + 4*t^3)*x^3 + .... - Peter Bala, Mar 06 2017
From G. C. Greubel, Sep 22 2024: (Start)
T(2*n, n) = A037966(n+1).
T(2*n-1, n) = 2*A085373(n-1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n) - 2*[n=2]. (End)
Extensions
Offset corrected by G. C. Greubel, Sep 22 2024
Comments