cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141611 Triangle read by rows: T(n, k) = (n-k+1)*(k+1)*binomial(n, k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 18, 4, 5, 32, 54, 32, 5, 6, 50, 120, 120, 50, 6, 7, 72, 225, 320, 225, 72, 7, 8, 98, 378, 700, 700, 378, 98, 8, 9, 128, 588, 1344, 1750, 1344, 588, 128, 9, 10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10, 11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 22 2008

Keywords

Comments

Read as a square array, this array factorizes as M*transpose(M), where M = ( k*binomial(n, k) )A003506(n,k).%20-%20_Peter%20Bala">{n,k>=1} = A003506(n,k). - _Peter Bala, Mar 06 2017

Examples

			Triangle begins as:
   1;
   2,   2;
   3,   8,    3;
   4,  18,   18,    4;
   5,  32,   54,   32,    5;
   6,  50,  120,  120,   50,    6;
   7,  72,  225,  320,  225,   72,    7;
   8,  98,  378,  700,  700,  378,   98,    8;
   9, 128,  588, 1344, 1750, 1344,  588,  128,    9;
  10, 162,  864, 2352, 3780, 3780, 2352,  864,  162,  10;
  11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11;
  ...
From _Peter Bala_, Mar 06 2017: (Start)
Factorization as a square array
  /1         \ /1  2  3  4...\ /1  2   3   4...\
  |2  2      | |   2  6 12...| |2  8  12  32...|
  |3  6  3   |*|      3 12...|=|3 18  54 120...|
  |4 12 12 4 | |         4...| |4 32 120 320...|
  |...       | |             | |...            |
(End)
		

Crossrefs

Cf. A003506, A007466 (row sums), A037966, A085373.

Programs

  • Magma
    A141611:= func< n,k | (k+1)*(n-k+1)*Binomial(n,k) >;
    [A141611(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 22 2024
    
  • Mathematica
    T[n_, m_]:= (n-m+1)*(m+1)*Binomial[n,m];
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
  • PARI
    T(n,m)=(n - m + 1)*(m + 1)*binomial(n, m) \\ Charles R Greathouse IV, Feb 15 2017
    
  • SageMath
    def A141611(n,k): return (k+1)*(n-k+1)*binomial(n,k)
    flatten([[A141611(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Sep 22 2024

Formula

T(n, k) = (k+1)*(n-k+1)*binomial(n,k).
Sum_{k=0..n} T(n, k) = A007466(n+1) (row sums).
O.g.f.: (1 - (1 + t)*x + 2*t*x^2)/(1 - (1 + t)*x)^3 = 1 + (2 + 2*t)*x + (3 + 8*t + 3*t^2)*x^2 + (4 + 18*t + 18*t^2 + 4*t^3)*x^3 + .... - Peter Bala, Mar 06 2017
From G. C. Greubel, Sep 22 2024: (Start)
T(2*n, n) = A037966(n+1).
T(2*n-1, n) = 2*A085373(n-1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n) - 2*[n=2]. (End)

Extensions

Offset corrected by G. C. Greubel, Sep 22 2024