A109906
A triangle based on A000045 and Pascal's triangle: T(n,m) = Fibonacci(n-m+1) * Fibonacci(m+1) * binomial(n,m).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 5, 12, 24, 12, 5, 8, 25, 60, 60, 25, 8, 13, 48, 150, 180, 150, 48, 13, 21, 91, 336, 525, 525, 336, 91, 21, 34, 168, 728, 1344, 1750, 1344, 728, 168, 34, 55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55, 89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 2;
3, 6, 6, 3;
5, 12, 24, 12, 5;
8, 25, 60, 60, 25, 8;
13, 48, 150, 180, 150, 48, 13;
21, 91, 336, 525, 525, 336, 91, 21;
34, 168, 728, 1344, 1750, 1344, 728, 168, 34;
55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55;
89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89;
...
-
a109906 n k = a109906_tabl !! n !! k
a109906_row n = a109906_tabl !! n
a109906_tabl = zipWith (zipWith (*)) a058071_tabl a007318_tabl
-- Reinhard Zumkeller, Aug 15 2013
-
f:= n-> combinat[fibonacci](n+1):
T:= (n, k)-> binomial(n, k)*f(k)*f(n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
-
Clear[t, n, m] t[n_, m_] := Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A110023
A triangle of coefficients based on A000931 and Pascal's triangle: a(n)=a(n-2)+a(n-3); t(n,m)=a(n - m + 1)*a(m + 1)*Binomial[n, m].
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 6, 6, 2, 3, 8, 24, 8, 3, 4, 15, 40, 40, 15, 4, 5, 24, 90, 80, 90, 24, 5, 7, 35, 168, 210, 210, 168, 35, 7, 9, 56, 280, 448, 630, 448, 280, 56, 9, 12, 81, 504, 840, 1512, 1512, 840, 504, 81, 12, 16, 120, 810, 1680, 3150, 4032, 3150, 1680, 810, 120, 16
Offset: 1
{1},
{1, 1},
{2, 2, 2},
{2, 6, 6, 2},
{3, 8, 24, 8, 3},
{4, 15, 40, 40, 15, 4},
{5, 24, 90, 80, 90, 24, 5},
{7, 35, 168, 210, 210, 168, 35, 7},
{9, 56, 280, 448, 630, 448, 280, 56, 9},
{12, 81, 504, 840, 1512, 1512, 840, 504, 81, 12},
{16, 120, 810, 1680, 3150, 4032, 3150, 1680, 810, 120, 16}
-
Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}] Flatten[%]
A110102
A triangle of coefficients based on A000931: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 2, 3, 4, 3, 4, 4, 3, 4, 5, 4, 6, 4, 6, 4, 5, 7, 5, 8, 6, 6, 8, 5, 7, 9, 7, 10, 8, 9, 8, 10, 7, 9, 12, 9, 14, 10, 12, 12, 10, 14, 9, 12, 16, 12, 18, 14, 15, 16, 15, 14, 18, 12, 16
Offset: 1
{1},
{1, 1},
{2, 1, 2},
{2, 2, 2, 2},
{3, 2, 4, 2, 3},
{4, 3, 4, 4, 3, 4},
{5, 4, 6, 4, 6, 4, 5},
{7, 5, 8, 6, 6, 8, 5, 7},
{9, 7, 10, 8, 9, 8, 10, 7, 9},
{12, 9, 14, 10, 12, 12, 10, 14, 9, 12},
{16, 12, 18, 14, 15, 16, 15, 14, 18, 12, 16}
-
Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A110361
A triangle of coefficients based on A000931 and A000045: a(n) = a(n - 2) + a(n - 3); t(n,m) := a(n - m + 1)*a(m + 1)*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)].
Original entry on oeis.org
1, 1, 1, 4, 1, 4, 6, 4, 4, 6, 15, 6, 16, 6, 15, 32, 15, 24, 24, 15, 32, 65, 32, 60, 36, 60, 32, 65, 147, 65, 128, 90, 90, 128, 65, 147, 306, 147, 260, 192, 225, 192, 260, 147, 306, 660, 306, 588, 390, 480, 480, 390, 588, 306, 660, 1424, 660, 1224, 882, 975, 1024, 975, 882
Offset: 1
{1},
{1, 1},
{4, 1, 4},
{6, 4, 4, 6},
{15, 6, 16, 6, 15},
{32, 15, 24, 24, 15, 32},
{65, 32, 60, 36, 60, 32, 65},
{147, 65, 128, 90, 90, 128, 65, 147},
{306, 147, 260, 192, 225, 192, 260, 147, 306},
{660, 306, 588, 390, 480, 480, 390, 588, 306, 660},
{1424, 660, 1224, 882, 975, 1024, 975, 882, 1224, 660, 1424}
-
Clear[t, a, n, m] a[0] = 1; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; t[n_, m_] := a[(n - m + 1)]*a[(m + 1)]*Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Showing 1-4 of 4 results.
Comments