cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141696 Triangle read by rows, T(n, k) = ( ( 6 * Sum_{j=0..k+1} (-1)^j * binomial(n+1, j) * (k-j+1)^n ) - 4 * binomial(n-1, k) ) / 2.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 70, 186, 70, 1, 1, 161, 886, 886, 161, 1, 1, 348, 3543, 7208, 3543, 348, 1, 1, 727, 12837, 46787, 46787, 12837, 727, 1, 1, 1490, 43768, 264590, 468430, 264590, 43768, 1490, 1, 1, 3021, 143448, 1365408, 3930810
Offset: 1

Views

Author

Roger L. Bagula, Sep 11 2008

Keywords

Examples

			{1},
{1, 1},
{1, 8, 1},
{1, 27, 27, 1},
{1, 70, 186, 70, 1},
{1, 161, 886, 886, 161, 1},
{1, 348, 3543, 7208, 3543, 348, 1},
{1, 727, 12837, 46787, 46787, 12837, 727, 1},
{1, 1490, 43768, 264590, 468430, 264590, 43768, 1490, 1},
{1, 3021, 143448, 1365408, 3930810, 3930810, 1365408, 143448, 3021, 1}
		

Crossrefs

Cf. Eulerian numbers (A008292) and Pascal's triangle (A007318).
Cf. A141697.

Programs

  • Mathematica
    i = 4; l = 6; Table[Table[(l*Sum[(-1)^j Binomial[n + 1, j](k + 1 -j)^n, {j, 0, k + 1}] - i*Binomial[n - 1, k])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
  • PARI
    {t(n,k) = (6*sum(j=0, k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n) - 4* binomial(n-1,k))/2};
    for(n=1,10, for(k=0,n-1, print1(t(n,k), ", "))) \\ G. C. Greubel, Jun 03 2018

Extensions

Edited by the Associate Editors of the OEIS, Jun 10 2018
Showing 1-1 of 1 results.