cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141697 T(n,k) = (q*Sum_{j=0..k+1} (-1)^j*binomial(n+1, j)*(k+1-j)^n - p*binomial(n-1, k))/2 where p=12 and q=14.

Original entry on oeis.org

1, 1, 1, 1, 16, 1, 1, 59, 59, 1, 1, 158, 426, 158, 1, 1, 369, 2054, 2054, 369, 1, 1, 804, 8247, 16792, 8247, 804, 1, 1, 1687, 29925, 109123, 109123, 29925, 1687, 1, 1, 3466, 102088, 617302, 1092910, 617302, 102088, 3466, 1, 1, 7037, 334664, 3185840, 9171722, 9171722, 3185840, 334664, 7037, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 11 2008

Keywords

Comments

Row n is made of coefficients from 7*(1 - x)^(n+1) * polylog(-n,x)/x - 6*(1 + x)^(n-1). - Thomas Baruchel, Jun 03 2018

Examples

			Triangle begins:
  1;
  1,    1;
  1,   16,      1;
  1,   59,     59,       1;
  1,  158,    426,     158,       1;
  1,  369,   2054,    2054,     369,       1;
  1,  804,   8247,   16792,    8247,     804,       1;
  1, 1687,  29925,  109123,  109123,   29925,    1687,      1;
		

Crossrefs

Cf. Eulerian numbers (A008292) and Pascal's triangle (A007318).
Cf. A141696.

Programs

  • Magma
    [ 7*(&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) - 6*Binomial(n-1,k): k in [0..n-1], n in [1..10]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T:= proc(n, k): 7*add((-1)^j*binomial(n+1, j)*(k-j+1)^n, j = 0..k+1) - 6*binomial(n-1, k); end proc; seq(seq(T(n,k), k=0..n-1), n=1..10); # G. C. Greubel, Nov 13 2019
  • Mathematica
    i=12; l=14; Table[Table[(l*Sum[(-1)^j*Binomial[n+1, j](k+1-j)^n, {j, 0, k+1}] - i*Binomial[n-1, k])/2, {k,0,n-1}], {n,10}]//Flatten
  • PARI
    T(n,k) = 7*sum(j=0, k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n) - 6* binomial(n-1,k);
    for(n=1,10, for(k=0,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Jun 03 2018
    
  • PARI
    row(n) = Vec(7*(1 - x)^(n+1)*polylog(-n,x)/x - 6*(1 + x)^(n-1)); \\ Michel Marcus, Jun 08 2018
    
  • Sage
    [[ 7*sum( (-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1)) - 6*binomial(n-1,k) for k in (0..n-1)] for n in (1..10)] # G. C. Greubel, Nov 13 2019

Formula

p=12; q=14; T(n,k) = (q*Sum_{j=0..k+1} (-1)^j*binomial(n+1, j)*(k+1-j)^n - p*binomial(n-1, k))/2.
a(n) = 3*A168524(n) - 2*A154337(n). - Thomas Baruchel, Jun 08 2018

Extensions

Edited by G. C. Greubel, Nov 13 2019
Showing 1-1 of 1 results.