cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A141766 A positive integer n is included if both (p-1) and (p+1) divide n for every prime p that divides n.

Original entry on oeis.org

1, 12, 24, 36, 48, 60, 72, 96, 108, 120, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 576, 600, 648, 660, 672, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1152, 1176, 1200, 1296, 1320, 1344, 1440, 1500, 1512, 1536, 1620
Offset: 1

Views

Author

Leroy Quet, Jul 02 2008

Keywords

Comments

Every term is a multiple of 12.

Examples

			120 has the prime factorization of 2^3 * 3^1 * 5^1. The distinct primes dividing 120 are therefore 2,3,5. 2-1=1, 3-1=2 and 5-1=4 all divide 120. Also, 2+1=3, 3+1=4 and 5+1=6 all divide 120. So 120 is included in the sequence.
		

Crossrefs

Programs

  • Haskell
    a141766 n = a141766_list !! (n-1)
    a141766_list = filter f [1..] where
       f x = all (== 0) $ map (mod x) $ (map pred ps) ++ (map succ ps)
             where ps = a027748_row x
    -- Reinhard Zumkeller, Aug 27 2013
  • Mathematica
    Select[Range[2, 1620], Function[n, AllTrue[FactorInteger[n][[All, 1]], AllTrue[# + {-1, 1}, Divisible[n, #] &] &]]] (* Michael De Vlieger, Sep 22 2017 *)

Extensions

a(12)-a(50) from Donovan Johnson, Sep 27 2008
a(1)=1 prepended by Max Alekseyev, Aug 27 2013

A160665 Numbers k such that the arithmetic mean of the first k Lucas numbers A000032 is an integer.

Original entry on oeis.org

1, 3, 24, 48, 72, 96, 120, 144, 192, 216, 240, 288, 336, 360, 384, 406, 432, 480, 576, 600, 648, 672, 720, 768, 864, 936, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2160, 2208, 2304
Offset: 1

Views

Author

Ctibor O. Zizka, May 22 2009

Keywords

Comments

Numbers k such that Sum_{i=0..k} A000032(i)/(k+1) is an integer. - Robert G. Wilson v, May 25 2009
Why do the terms in A141767 so closely correspond to A160665? Except for k = 1, 3, 406, 44758, 341446, 1413286, 3170242, 4861698, 7912534, ..., k == 0 (mod 24). - Robert G. Wilson v, May 25 2009

Crossrefs

Programs

  • Maple
    A000032 := proc(n) option remember ; if n <= 1 then 2-n; else procname(n-1)+procname(n-2) ; fi; end: A001610 := proc(n) add(A000032(i),i=0..n-1) ; end: for n from 1 to 3000 do if A001610(n) mod n = 0 then printf("%d,",n) ; fi; od: # R. J. Mathar, May 25 2009
  • Mathematica
    lst = {}; a = 2; b = 1; s = 3; n = 3; While[n < 2447, c = a + b; s = s + c; If[Mod[c, n] == 0, AppendTo[lst, n]]; a = b; b = c; n++ ]; lst (* Robert G. Wilson v, May 25 2009 *)

Formula

{k: k | A001610(k)}. - R. J. Mathar, May 25 2009

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, May 25 2009

A254141 The average of a(n) consecutive Fibonacci numbers is never an integer.

Original entry on oeis.org

8, 16, 21, 28, 32, 40, 52, 55, 56, 64, 65, 68, 69, 80, 84, 85, 87, 88, 92, 93, 99, 104, 105, 112, 117, 119, 128, 132, 133, 136, 140, 141, 145, 148, 152, 153, 155, 156, 160, 161, 164, 165, 171, 172, 176, 184, 187, 188, 196, 200, 203, 204, 205, 207, 208, 209, 212
Offset: 1

Views

Author

Paolo P. Lava, Jan 26 2015

Keywords

Comments

Subset of A033949 and A175594 (essentially the same sequence).
Numbers of the form 2^k, with k>=3, appear to be part of the sequence.
The file "List of indexes and steps (k, x, y)" (see Links) for k = 1, 2, 3, 4, ... consecutive Fibonacci numbers gives the minimum index to start to calculate the average ( x ) and the step to add to get all the other averages ( y ).
E.g.: for k = 7 we have 7, 6, 8. This means that we must start from the 6th Fibonacci number to add 7 consecutive Fibonacci numbers and get an average that is an integer. Fibonacci(6) + Fibonacci(7) + ... + Fibonacci(12) = 8 + 13 + 21 + 34 + 55 + 89 + 144 = 364 and 364 / 7 = 52.
Then 6 + 1*8 = 14, 6 + 2*8 = 22, 6 + 3*8 = 30, etc. are the other indexes:
Fibonacci(14) + Fibonacci (15) + ... + Fibonacci(20) = 377 + 610 + 987 + 1597 + 2584 + 4181 + 6765 = 17101 and 17101 / 7 = 2443;
Fibonacci(22) + Fibonacci(23) + ... + Fibonacci(28) = 17711 + 28657 + 46368 + 75025 + 121393 + 196418 + 317811 = 803383 and 803383 / 7 = 114769;
Fibonacci(30) + Fibonacci(31) + ... + Fibonacci(36) = 832040 + 1346269 + 2178309 + 3524578 + 5702887 + 9227465 + 14930352 = 37741900 and 37741900 / 7 = 5391700; etc.
In particular we note that:
x = 0 is A219612; x = 1 is A124456; x = 0 and y = k - 1 is A106535;
y = 1 is A141767; x = k - 1 and y = k + 1 is A000057;
x = y - 1 or y|k is A023172; y = k is A000351;
x = y - k + 1 appears to give only prime numbers: 3,11,19,31,59,71,79,131,179,191,239,251,271,311,359,379,419,431,439,479,491,499,571,599,631,659,719,739,751,839,971, etc.

Crossrefs

Programs

  • Maple
    with(numtheory); with(combinat):P:=proc(q) local a,b,k,j,n,ok;
    for j from 1 to q do b:=0; ok:=1;
    for n from 0 to q do a:=add(fibonacci(n+k),k=0..j-1)/j;
    if type(a,integer) then ok:=0; break; fi; od;
    if ok=1 then print(j); fi; od; end: P(20000);
Showing 1-3 of 3 results.