cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142075 Triangle T(n, k) = 2^(k-1) * E(n, k-1) where E(n,k) are the Eulerian numbers A173018, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 8, 4, 1, 22, 44, 8, 1, 52, 264, 208, 16, 1, 114, 1208, 2416, 912, 32, 1, 240, 4764, 19328, 19056, 3840, 64, 1, 494, 17172, 124952, 249904, 137376, 15808, 128, 1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256, 1, 2026, 191360, 3641536, 20965664, 41931328, 29132288, 6123520, 259328, 512
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 15 2008

Keywords

Comments

Same as A156365, except for the additional a(0) = 1 there.

Examples

			Triangle begins as:
  1;
  1,    2;
  1,    8,     4;
  1,   22,    44,      8;
  1,   52,   264,    208,      16;
  1,  114,  1208,   2416,     912,      32;
  1,  240,  4764,  19328,   19056,    3840,     64;
  1,  494, 17172, 124952,  249904,  137376,  15808,   128;
  1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256;
  ...
		

Crossrefs

Essentially the same as A156365.

Programs

  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
    [2^(k-1)*Eulerian(n,k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jun 07 2021
    
  • Mathematica
    (* First program *)
    p[x_, n_]= (1-2*x)^(n+1)*PolyLog[-n, 2*x]/(2*x);
    Table[CoefficientList[p[x, n], x], {n,12}]//Flatten
    (* Second program *)
    Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
    Table[2^(k-1)*Eulerian[n, k-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
  • Sage
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    flatten([[2^(k-1)*Eulerian(n,k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jun 07 2021

Formula

G.f.: 1/x/Q(0) -1/x, where Q(k) = 1 - x*(k+1)/( 1 - y*2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 17 2013
Sum_{k=1..n} T(n, k) = A000670(n), for n >= 1. - G. C. Greubel, Jun 07 2021

Extensions

Edited and new name by Joerg Arndt, Dec 30 2018