cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A142127 Primes congruent to 18 mod 37.

Original entry on oeis.org

277, 499, 647, 1091, 1609, 1831, 1979, 2053, 2423, 2719, 3089, 3163, 3533, 3607, 4051, 4273, 4421, 4643, 5087, 5309, 5531, 5827, 6197, 6271, 6863, 7159, 7307, 7529, 7603, 8269, 8713, 8861, 9157, 9601, 9749, 10193, 10267, 10711, 10859, 11821, 11969, 12043
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A142128 Primes congruent to 19 mod 37.

Original entry on oeis.org

19, 167, 241, 389, 463, 907, 1129, 1277, 1499, 1721, 2017, 2239, 2609, 2683, 3571, 3719, 3793, 4903, 5051, 5273, 5347, 5569, 5717, 5791, 5939, 6679, 6827, 7789, 7937, 8011, 8233, 8677, 9343, 9491, 9787, 10009, 10453, 10601, 11119, 11489, 11933, 12007, 12377
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A274202 Primes congruent to 31 mod 65.

Original entry on oeis.org

31, 421, 811, 941, 1201, 1721, 2111, 2371, 3541, 3671, 3931, 4451, 5101, 5231, 5881, 6011, 6271, 6661, 6791, 8221, 8741, 9001, 9391, 9521, 9781, 10301, 10691, 11471, 11731, 12251, 12511, 12641, 13291, 13421, 13681, 14071, 14461, 14591, 14851, 15241, 15761
Offset: 1

Views

Author

Vincenzo Librandi, Jun 13 2016

Keywords

Comments

Subsequence of A030430 and A102732.

Crossrefs

Cf. similar sequences of the type primes congruent to k mod 2*k+3: A045392 (k=2), A102732 (k=5), A138629 (k=7), A141873 (k=8), A141914 (k=10), A141935 (k=11), A141989 (k=13), A142018 (k=14), A142086 (k=16), A142126 (k=17), A142216 (k=19), A142269 (k=20), A142373 (k=22), A142433 (k=23), A142555 (k=25), A142619 (k=26), A142755 (k=28), A142827 (k=29), this sequence (k=31), A154621 (k=32), A154624 (k=34), A154628 (k=35).

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | p mod 65 eq 31];
  • Mathematica
    Select[Prime[Range[2000]], MemberQ[{31}, Mod[#, 65]] &]
    Select[Range[31,16000,65],PrimeQ] (* Harvey P. Dale, May 06 2018 *)
Showing 1-3 of 3 results.