cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A142138 Primes congruent to 29 mod 37.

Original entry on oeis.org

29, 103, 251, 547, 769, 991, 1213, 1361, 1583, 1657, 1879, 2027, 2693, 2767, 3137, 3359, 3433, 3581, 3803, 3877, 4099, 4691, 4987, 5209, 5431, 5653, 5801, 6689, 6763, 6911, 7207, 7577, 7873, 8243, 8317, 8539, 8761, 9649, 9871, 10093, 10463, 11351, 12239, 12757
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A142139 Primes congruent to 30 mod 37.

Original entry on oeis.org

67, 659, 733, 881, 1103, 1399, 1621, 2213, 2287, 2657, 2731, 2879, 2953, 3323, 3767, 3989, 4211, 4507, 4729, 4877, 4951, 5099, 5839, 5987, 6653, 6949, 7393, 7541, 8059, 8429, 9391, 9539, 9613, 10427, 10501, 10723, 11093, 11833, 11981, 12203, 12277, 12647
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 03 2016

A301619 Primes congruent to 65 (mod 192).

Original entry on oeis.org

257, 449, 641, 1217, 1409, 1601, 2753, 3137, 3329, 4289, 4481, 4673, 5441, 6977, 7937, 8513, 9281, 9473, 9857, 10433, 11393, 11777, 11969, 12161, 13121, 13313, 13697, 14081, 14657, 15233, 15809, 16001, 16193, 17729, 17921, 19073, 19457, 19841, 21377, 21569
Offset: 1

Views

Author

Felix Fröhlich, Mar 24 2018

Keywords

Comments

In other words, primes of the form 192*k+65 for k > 0.

Crossrefs

Subsequence of A002144 (primes of form 4*k+65) and A007519 (primes of form 8*k+65).
Cf. primes congruent to 65 (mod k): A142068 (k=66), A142137 (k=74), A142221 (k=82), A142271 (k=86), A142369 (k=94), A142427 (k=98), A142485 (k=102), A142542 (k=106), A142670 (k=114), A142733 (k=118), A142802 (k=122), A142890 (k=126), A105129 (k=128).

Programs

  • Magma
    [p: p in PrimesUpTo(25000) | p mod 192 in {65}]; // Vincenzo Librandi, Jan 04 2020
  • Mathematica
    Select[Prime[Range[2500]], MemberQ[{65}, Mod[#, 192]] &] (* Vincenzo Librandi, Jan 04 2020 *)
  • PARI
    forprime(p=1, 5e4, if(Mod(p, 192)==65, print1(p, ", ")))
    
Showing 1-3 of 3 results.