cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142238 Numerators of continued fraction convergents to sqrt(3/2).

Original entry on oeis.org

1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)

Keywords

Comments

From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued
fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2)
and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2)
and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1).
For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9,
49/40, 109/89.
In general, if a(k,n) and b(k,n) are the denominators and numerators,
respectively, of continued fraction convergents to sqrt((k+1)/k)
as defined above, then
k*a(k,2n)^2-a(k,2n-1)*a(k,2n+1)=k=k*a(k,2n-2)*a(k,2n)-a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1)-k*b(k,2n)^2=k+1=b(k,2n-1)^2-k*b(k,2n-2)*b(k,2n);
for example, if k=2 and n=3, then b(2,n)=a(n) and
2*a(2,6)^2-a(2,5)*a(2,7)=2*881^2-396*3920=2;
2*a(2,4)*a(2,6)-a(2,5)^2=2*89*881-396^2=2;
b(2,5)*b(2,7)-2*b(2,6)^2=485*4801-2*1079^2=3;
b(2,5)^2-2*b(2,4)*b(2,6)=485^2-2*109*1079=3.

Examples

			The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
  • Mathematica
    Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
    LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015

Formula

G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(2n) = A041006(2n)/2 = A054320(n), a(2n-1) = A041006(2n-1) = A041038(2n-1) = A001079(n). - M. F. Hasler, Feb 14 2009