cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142458 Triangle T(n,k) read by rows: T(n,k) = 1 if k=1 or k=n, otherwise T(n,k) = (3*n-3*k+1)*T(n-1,k-1) + (3*k-2)*T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 546, 166, 1, 1, 677, 5482, 5482, 677, 1, 1, 2724, 47175, 109640, 47175, 2724, 1, 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1, 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Consider the triangle T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k). For m = ...,-2,-1,0,1,2,3,... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, ... - N. J. A. Sloane, May 08 2013

Examples

			The rows n >= 1 and columns 1 <= k <= n look as follows:
  1;
  1,     1;
  1,     8,       1;
  1,    39,      39,        1;
  1,   166,     546,      166,        1;
  1,   677,    5482,     5482,      677,        1;
  1,  2724,   47175,   109640,    47175,     2724,       1;
  1, 10915,  373809,  1709675,  1709675,   373809,   10915,     1;
  1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1;
		

Crossrefs

Cf. A225372 (m=-2), A144431 (m=-1), A007318 (m=0), A008292 (m=1), A060187 (m=2), this sequence (m=3), A142459 (m=4), A142560 (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9).

Programs

  • Maple
    A142458 := proc(n,k) if n = k then 1; elif k > n or k < 1 then 0 ;else (3*n-3*k+1)*procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; end if; end proc:
    seq(seq(A142458(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jun 04 2011
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
    Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
  • Sage
    def T(n,k,m): # A142458
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    flatten([[T(n,k,3) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 3.
Sum_{k=1..n} T(n, k) = A008544(n-1).
From G. C. Greubel, Mar 14 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = A144414(n-1).
T(n, 3) = A142976(n-2).
T(n, 4) = A144380(n-3).
T(n, 5) = A144381(n-4). (End)

Extensions

Edited by the Associate Editors of the OEIS, Aug 28 2009