Original entry on oeis.org
1, 166, 5482, 109640, 1709675, 23077694, 284433852, 3300384000, 36740695125, 397251942790, 4206505251886, 43874389439176, 452588032465727, 4630933106076350, 47101176806668160, 476947462419456864, 4813761757416769257, 48466731584985480870, 487104579690137249650, 4889039701269534580360
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..990
- Index entries for linear recurrences with constant coefficients, signature (40,-675,6294,-35679,127548,-289173,409062,-347112,161056,-31360).
-
[(1/162)*( 8*10^(n+3) - 30*(3*n +8)*7^(n+2) + 6*(9*n^2 +39*n +40)*4^(n+2) - (27*n^3 +135*n^2 +198*n +80)): n in [1..30]]; // G. C. Greubel, Mar 15 2022
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1,k-1,m] + (m*k - m+1)*T[n-1,k,m]];
A144380[n_]:= T[n+3, n, 3];
Table[A144380[n], {n,30}] (* modified by G. C. Greubel, Mar 15 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A144380(n): return T(n+3, n, 3)
[A144380(n) for n in (1..30)] # G. C. Greubel, Mar 15 2022
A155491
Triangle T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 78, 78, 1, 1, 415, 1820, 415, 1, 1, 2031, 27410, 27410, 2031, 1, 1, 9534, 330225, 959350, 330225, 9534, 1, 1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1, 1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 78, 78, 1;
1, 415, 1820, 415, 1;
1, 2031, 27410, 27410, 2031, 1;
1, 9534, 330225, 959350, 330225, 9534, 1;
1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1;
1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1;
-
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]];
T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1);
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 01 2022 *)
-
@CachedFunction
def t(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m)
def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
Original entry on oeis.org
1, 26, 2741, 683870, 315704418, 234725594388, 257237392999893, 390832857108454838, 787178784737043042806, 2031210797603911366282796, 6536955866068372922068141666, 25676217636579568989377656129516, 120915166829869713032692550819662756, 672580820552232143302651758669053327784
Offset: 1
-
T[n_, k_, m_]:= T[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1,k-1,m] + (m*k-m+ 1)*T[n-1,k,m]];
a[n_]:= 2*T[2*n,n,3]/(n+1);
Table[a[n], {n,30}] (* modified by G. C. Greubel, Mar 14 2022 *)
-
@CachedFunction
def T(n,k,m): # A142458
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
[2*T(2*n,n,3)/(n+1) for n in (1..30)] # G. C. Greubel, Mar 14 2022
Name corrected and more terms added by
G. C. Greubel, Mar 14 2022
A144381
a(n) = A142458(n+5, n). Fifth diagonal of A142458 triangle.
Original entry on oeis.org
1, 677, 47175, 1709675, 44451550, 947113254, 17716715490, 302925749370, 4856552119935, 74258231957275, 1095758678253041, 15736592058221517, 221321453958111620, 3062416225698505060, 41836761536767296660, 565817483249269872324, 7591501608353930033805, 101209790951020335444705
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..890
- Index entries for linear recurrences with constant coefficients, signature (75, -2520, 50204, -661458, 6086718, -40273648, 194372208, -687083013, 1771618303, -3293261472, 4325310828, -3886563008, 2261691264, -765434880, 114150400).
-
[(1/1944)*((27*n^3 + 216*n^2 + 549*n + 440)*(3*n + 2 - 2*4^(n + 4)) +
60*(9*n^2 + 57*n + 88)*7^(n + 3) - 32*(3*n + 11)*10^(n + 4) +
880*13^(n + 3)): n in [1..30]]; // G. C. Greubel, Mar 16 2022
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A144381[n_]:= T[n+4,n,3];
Table[A144381[n], {n,30}] (* modified by G. C. Greubel, Mar 16 2022 *)
-
@CachedFunction
def T(n,k,m): # A144381
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A144381(n): return T(n+4, n, 3)
[A144381(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022
A225433
Triangle T(n, k) = T(n, k-1) + (-1)^k*A142458(n+2, k+1) if k <= floor(n/2), otherwise T(n, n-k), with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -38, 1, 1, -165, -165, 1, 1, -676, 4806, -676, 1, 1, -2723, 44452, 44452, -2723, 1, 1, -10914, 362895, -1346780, 362895, -10914, 1, 1, -43681, 2780367, -20297327, -20297327, 2780367, -43681, 1, 1, -174752, 20554588, -263879264, 683233990, -263879264, 20554588, -174752, 1
Offset: 0
The triangle begins:
1;
1, 1;
1, -38, 1;
1, -165, -165, 1;
1, -676, 4806, -676, 1;
1, -2723, 44452, 44452, -2723, 1;
1, -10914, 362895, -1346780, 362895, -10914, 1;
1, -43681, 2780367, -20297327, -20297327, 2780367, -43681, 1;
-
See Maple program in A159041.
-
(* First program *)
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n+1) -m*(k+1) +1)*T[n-1, k- 1, m] + (m*(k+1) -(m-1))*T[n-1, k, m] ];
p[x_, n_]:= p[x, n]= Sum[x^i*If[i==Floor[n/2] && Mod[n, 2]==0, 0, If[i<= Floor[n/2], (-1)^i*T[n,i,3], -(-1)^(n-i)*T[n,i,3]]], {i,0,n}]/(1-x);
Flatten[Table[CoefficientList[p[x, n], x], {n,0,12}]]
(* Second program *)
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A142458[n_, k_]:= T[n,k,3];
A225433[n_, k_]:= A225433[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], A225433[n, k-1] +(-1)^k*A142458[n+2, k+1], A225433[n, n-k]]];
Table[A225433[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 19 2022 *)
-
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142458(n,k): return T(n,k,3)
@CachedFunction
def A225433(n,k):
if (k==0 or k==n): return 1
elif (k <= (n//2)): return A225433(n,k-1) + (-1)^k*A142458(n+2,k+1)
else: return A225433(n,n-k)
flatten([[A225433(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 19 2022
Original entry on oeis.org
1, 1, 8, 39, 546, 5482, 109640, 1709675, 44451550, 947113254, 30307624128, 821539580358, 31218504053604, 1028949571999572, 45273781167981168, 1758747856988046771, 87937392849402338550, 3935893923685215214030
Offset: 1
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A154425[n_]:= T[n, 1+Floor[n/2], 3];
Table[A154425[n], {n, 30}] (* modified by G. C. Greubel, Mar 16 2022 *)
-
@CachedFunction
def T(n,k,m): # A142458
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A154425(n): return T(n, 1 + (n//2), 3)
[A154425(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022
A154596
a(n) = Sum_{j=1..n-1} A142458(n-1, k)*a(n - k), with a(1) = 1.
Original entry on oeis.org
1, 1, 2, 11, 129, 3214, 162491, 16306117, 3231430542, 1254563121783, 953359099059949, 1417753660258148022, 4128222097278496550683, 23571703478682225135264061, 264268834213603744830353397238
Offset: 1
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A142458[n_, k_]:= A142458[n, k] = T[n, k, 3];
a[n_]:= a[n]= If[n==1, 1, Sum[A142458[n-1, j]*a[n-j], {j,n-1}]];
Table[a[n], {n, 30}] (* modified by G. C. Greubel, Mar 16 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142458(n,k): return T(n,k,3)
@CachedFunction
def A154596(n): return 1 if (n==1) else sum( A142458(n-1, j)*A154596(n-j) for j in (1..n-1) )
[A154596(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022
A167786
Triangle of z Transform coefficients from General Pascal [1,8,1} A142458 polynomials multiplied by factor 3^Floor[(2*k - 1)/3].
Original entry on oeis.org
0, 3, 3, 6, 9, 45, 45, 27, 234, 540, 360, 27, 315, 1305, 1980, 990, 81, 1026, 6750, 18360, 20790, 8316, 243, 3807, 26379, 115830, 234630, 212058, 70686, 243, 7938, 37800, 177660, 582120, 939708, 706860, 201960, 729, 26001, 280827, 873180, 3087315
Offset: 0
{0},
{3},
{3, 6},
{9, 45, 45},
{27, 234, 540, 360},
{27, 315, 1305, 1980, 990},
{81, 1026, 6750, 18360, 20790, 8316},
{243, 3807, 26379, 115830, 234630, 212058, 70686},
{243, 7938, 37800, 177660, 582120, 939708, 706860, 201960},
{729, 26001, 280827, 873180, 3087315, 8058204, 10814958, 6967620, 1741905},
{2187, -308610, 1076490, 7334820, 17120565, 48411594, 104968710, 120570120, 67934295, 15096510}
-
m = 3 A[n_, 1] := 1 A[n_, n_] := 1
A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
a = Table[A[n, k], {n, 10}, {k, n}]
p[x_, n_] = x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)
b = Table[p[x, n], {n, 0, 10}]
Table[3^Floor[(2*k - 1)/3]*CoefficientList[ExpandAll[ InverseZTransform[b[[k]], x, n] /. UnitStep[ -1 + n] -> 1], n], {k, 1, Length[b]}]
A168295
Triangle T(n, k) = coefficients of (p(x,n)), where p(x, n) = (n-1)! * Sum_{j=1..n} A142458(n, j)*binomial(x+j-1, n-1), read by rows.
Original entry on oeis.org
1, 1, 2, 2, 10, 10, 6, 52, 120, 80, 24, 280, 1160, 1760, 880, 120, 1520, 10000, 27200, 30800, 12320, 720, 11280, 78160, 343200, 695200, 628320, 209440, 5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800, 40320, 1438080, 15532160, 48294400, 170755200, 445688320, 598160640, 385369600, 96342400
Offset: 1
Triangle begins as:
1;
1, 2;
2, 10, 10;
6, 52, 120, 80;
24, 280, 1160, 1760, 880;
120, 1520, 10000, 27200, 30800, 12320;
720, 11280, 78160, 343200, 695200, 628320, 209440;
5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800;
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A142458[n_, k_]:= A142458[n, k]= T[n,k,3];
p[x_, n_]:= p[x, n]= Sum[A142458[n,k]*Pochhammer[x+k-n+1, n-1], {k, n}];
Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
-
@CachedFunction
def T(n,k,m): # A142458
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142458(n,k): return T(n,k,3)
@CachedFunction
def p(n,x): return sum( A142458(n,j)*rising_factorial(x+j-n+1, n-1) for j in (1..n))
def A168295(n,k): return ( p(n,x) ).series(x,n+1).list()[k-1]
flatten([[ A168295(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
Original entry on oeis.org
1, -1, 1, 7, -8, 1, -235, 273, -39, 1, 35353, -41116, 5928, -166, 1, -22683409, 26382125, -3804940, 106900, -677, 1, 60147266239, -69954818244, 10089231945, -283474190, 1796973, -2724, 1, -648088191536203, 753764796604717, -108711714513099, 3054442698125, -19362601277, 29358651, -10915, 1
Offset: 1
The triangle starts as:
1;
-1, 1;
7, -8, 1;
-235, 273, -39, 1;
35353, -41116, 5928, -166, 1;
-22683409, 26382125, -3804940, 106900, -677, 1;
60147266239, -69954818244, 10089231945, -283474190, 1796973, -2724, 1;
-
A142458:= proc(n,k) if n = k then 1; elif k > n or k < 1 then 0 ; else (3*n-3*k+1)*procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; end if; end proc:
A171274 := proc(n,k) option remember; if k=n then 1; else -add( procname(n,j)*A142458(j,k),j=k+1..n); end if; end proc:
seq(seq(A171274(n,k), k=1..n), n=1..10); # R. J. Mathar, Jun 04 2011
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142458[n_, k_]:= T[n,k,3];
A171274[n_, k_]:= A171274[n, k]= If[k==n, 1, -Sum[A171274[n, j]*A142458[j, k], {j,k+1,n}] ];
Table[A171274[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
-
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A142458(n,k): return T(n,k,3)
@CachedFunction
def A171274(n,k):
if (k==n): return 1
else: return (-1)*sum( A171274(n,j)*A142458(j,k) for j in (k+1..n) )
flatten([[A171274(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 18 2022
Showing 1-10 of 35 results.
Comments