A168518
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = -4, b = 2, and c = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 51, 51, 1, 1, 170, 514, 170, 1, 1, 521, 3646, 3646, 521, 1, 1, 1552, 22247, 49472, 22247, 1552, 1, 1, 4591, 125565, 534995, 534995, 125565, 4591, 1, 1, 13590, 677776, 5058698, 9506078, 5058698, 677776, 13590, 1, 1, 40341, 3560448, 43870968, 140136690, 140136690, 43870968, 3560448, 40341, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 51, 51, 1;
1, 170, 514, 170, 1;
1, 521, 3646, 3646, 521, 1;
1, 1552, 22247, 49472, 22247, 1552, 1;
1, 4591, 125565, 534995, 534995, 125565, 4591, 1;
1, 13590, 677776, 5058698, 9506078, 5058698, 677776, 13590, 1;
1, 40341, 3560448, 43870968, 140136690, 140136690, 43870968, 3560448, 40341, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,-4,2,2], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168518(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168518(n,k,-4,2,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A155467
Triangle T(n, k) = Eulerian(n+1, k)*Binomial(n+1, k)/(k+1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 22, 22, 1, 1, 65, 220, 65, 1, 1, 171, 1510, 1510, 171, 1, 1, 420, 8337, 21140, 8337, 420, 1, 1, 988, 40068, 218666, 218666, 40068, 988, 1, 1, 2259, 175296, 1852914, 3935988, 1852914, 175296, 2259, 1, 1, 5065, 717600, 13655760, 55034868, 55034868, 13655760, 717600, 5065, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 22, 22, 1;
1, 65, 220, 65, 1;
1, 171, 1510, 1510, 171, 1;
1, 420, 8337, 21140, 8337, 420, 1;
1, 988, 40068, 218666, 218666, 40068, 988, 1;
1, 2259, 175296, 1852914, 3935988, 1852914, 175296, 2259, 1;
1, 5065, 717600, 13655760, 55034868, 55034868, 13655760, 717600, 5065, 1;
-
(* First program *)
Needs["Combinatorica`"]
T[n_, k_]:= Eulerian[n+1, k]*Binomial[n+1, k]/(k+1);
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Apr 14 2010 *)
(* Second program *)
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]];
T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1);
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2022 *)
-
@CachedFunction
def t(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m)
def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
A155493
Triangle T(n, k) = binomial(n+1, k)*A142459(n+1, k+1)/(k+1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 15, 1, 1, 118, 118, 1, 1, 770, 3540, 770, 1, 1, 4671, 67810, 67810, 4671, 1, 1, 27321, 1039689, 3085355, 1039689, 27321, 1, 1, 156220, 14006244, 99524810, 99524810, 14006244, 156220, 1, 1, 878868, 173788752, 2602528824, 6090918372, 2602528824, 173788752, 878868, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 15, 1;
1, 118, 118, 1;
1, 770, 3540, 770, 1;
1, 4671, 67810, 67810, 4671, 1;
1, 27321, 1039689, 3085355, 1039689, 27321, 1;
1, 156220, 14006244, 99524810, 99524810, 14006244, 156220, 1;
1, 878868, 173788752, 2602528824, 6090918372, 2602528824, 173788752, 878868, 1;
-
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]];
T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1);
Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 01 2022 *)
-
@CachedFunction
def t(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m)
def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
Showing 1-3 of 3 results.
Comments