A168517
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = -1, b = 1, and c = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 27, 27, 1, 1, 87, 260, 87, 1, 1, 263, 1828, 1828, 263, 1, 1, 779, 11131, 24746, 11131, 779, 1, 1, 2299, 62793, 267515, 267515, 62793, 2299, 1, 1, 6799, 338902, 2529377, 4753074, 2529377, 338902, 6799, 1, 1, 20175, 1780242, 21935526, 70068408, 70068408, 21935526, 1780242, 20175, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 27, 27, 1;
1, 87, 260, 87, 1;
1, 263, 1828, 1828, 263, 1;
1, 779, 11131, 24746, 11131, 779, 1;
1, 2299, 62793, 267515, 267515, 62793, 2299, 1;
1, 6799, 338902, 2529377, 4753074, 2529377, 338902, 6799, 1;
1, 20175, 1780242, 21935526, 70068408, 70068408, 21935526, 1780242, 20175, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,-1,1,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168517(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168517(n,k,-1,1,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A168549
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 31, b = -59, and c = 15, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 67, 67, 1, 1, 435, 1596, 435, 1, 1, 1951, 16476, 16476, 1951, 1, 1, 7383, 123243, 282258, 123243, 7383, 1, 1, 25507, 783537, 3435627, 3435627, 783537, 25507, 1, 1, 83595, 4543678, 34677285, 65518690, 34677285, 4543678, 83595, 1, 1, 265351, 24934378, 312192718, 1002545920, 1002545920, 312192718, 24934378, 265351, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 67, 67, 1;
1, 435, 1596, 435, 1;
1, 1951, 16476, 16476, 1951, 1;
1, 7383, 123243, 282258, 123243, 7383, 1;
1, 25507, 783537, 3435627, 3435627, 783537, 25507, 1;
1, 83595, 4543678, 34677285, 65518690, 34677285, 4543678, 83595, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,31,-59,15], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168549(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168549(n,k,31,-59,15) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A168551
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 1, b = -1, and c = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 200, 65, 1, 1, 211, 1536, 1536, 211, 1, 1, 665, 9955, 22350, 9955, 665, 1, 1, 2059, 58521, 251931, 251931, 58521, 2059, 1, 1, 6305, 324322, 2441199, 4596954, 2441199, 324322, 6305, 1, 1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 19, 19, 1;
1, 65, 200, 65, 1;
1, 211, 1536, 1536, 211, 1;
1, 665, 9955, 22350, 9955, 665, 1;
1, 2059, 58521, 251931, 251931, 58521, 2059, 1;
1, 6305, 324322, 2441199, 4596954, 2441199, 324322, 6305, 1;
1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,1,-1,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168552(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168552(n,k,1,-1,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A168552
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 3, b = -3, and c = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 43, 140, 43, 1, 1, 159, 1244, 1244, 159, 1, 1, 551, 8779, 19954, 8779, 551, 1, 1, 1819, 54249, 236347, 236347, 54249, 1819, 1, 1, 5811, 309742, 2353021, 4440834, 2353021, 309742, 5811, 1, 1, 18167, 1684634, 21025310, 67447952, 67447952, 21025310, 1684634, 18167, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 11, 11, 1;
1, 43, 140, 43, 1;
1, 159, 1244, 1244, 159, 1;
1, 551, 8779, 19954, 8779, 551, 1;
1, 1819, 54249, 236347, 236347, 54249, 1819, 1;
1, 5811, 309742, 2353021, 4440834, 2353021, 309742, 5811, 1;
1, 18167, 1684634, 21025310, 67447952, 67447952, 21025310, 1684634, 18167, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,3,-3,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168552(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168552(n,k,3,-3,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
Showing 1-4 of 4 results.