A168517
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = -1, b = 1, and c = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 27, 27, 1, 1, 87, 260, 87, 1, 1, 263, 1828, 1828, 263, 1, 1, 779, 11131, 24746, 11131, 779, 1, 1, 2299, 62793, 267515, 267515, 62793, 2299, 1, 1, 6799, 338902, 2529377, 4753074, 2529377, 338902, 6799, 1, 1, 20175, 1780242, 21935526, 70068408, 70068408, 21935526, 1780242, 20175, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 27, 27, 1;
1, 87, 260, 87, 1;
1, 263, 1828, 1828, 263, 1;
1, 779, 11131, 24746, 11131, 779, 1;
1, 2299, 62793, 267515, 267515, 62793, 2299, 1;
1, 6799, 338902, 2529377, 4753074, 2529377, 338902, 6799, 1;
1, 20175, 1780242, 21935526, 70068408, 70068408, 21935526, 1780242, 20175, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,-1,1,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168517(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168517(n,k,-1,1,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A168518
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = -4, b = 2, and c = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 51, 51, 1, 1, 170, 514, 170, 1, 1, 521, 3646, 3646, 521, 1, 1, 1552, 22247, 49472, 22247, 1552, 1, 1, 4591, 125565, 534995, 534995, 125565, 4591, 1, 1, 13590, 677776, 5058698, 9506078, 5058698, 677776, 13590, 1, 1, 40341, 3560448, 43870968, 140136690, 140136690, 43870968, 3560448, 40341, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 51, 51, 1;
1, 170, 514, 170, 1;
1, 521, 3646, 3646, 521, 1;
1, 1552, 22247, 49472, 22247, 1552, 1;
1, 4591, 125565, 534995, 534995, 125565, 4591, 1;
1, 13590, 677776, 5058698, 9506078, 5058698, 677776, 13590, 1;
1, 40341, 3560448, 43870968, 140136690, 140136690, 43870968, 3560448, 40341, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,-4,2,2], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168518(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168518(n,k,-4,2,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A168551
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 1, b = -1, and c = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 19, 19, 1, 1, 65, 200, 65, 1, 1, 211, 1536, 1536, 211, 1, 1, 665, 9955, 22350, 9955, 665, 1, 1, 2059, 58521, 251931, 251931, 58521, 2059, 1, 1, 6305, 324322, 2441199, 4596954, 2441199, 324322, 6305, 1, 1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 19, 19, 1;
1, 65, 200, 65, 1;
1, 211, 1536, 1536, 211, 1;
1, 665, 9955, 22350, 9955, 665, 1;
1, 2059, 58521, 251931, 251931, 58521, 2059, 1;
1, 6305, 324322, 2441199, 4596954, 2441199, 324322, 6305, 1;
1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,1,-1,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168552(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168552(n,k,1,-1,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
A168552
Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 3, b = -3, and c = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 43, 140, 43, 1, 1, 159, 1244, 1244, 159, 1, 1, 551, 8779, 19954, 8779, 551, 1, 1, 1819, 54249, 236347, 236347, 54249, 1819, 1, 1, 5811, 309742, 2353021, 4440834, 2353021, 309742, 5811, 1, 1, 18167, 1684634, 21025310, 67447952, 67447952, 21025310, 1684634, 18167, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 11, 11, 1;
1, 43, 140, 43, 1;
1, 159, 1244, 1244, 159, 1;
1, 551, 8779, 19954, 8779, 551, 1;
1, 1819, 54249, 236347, 236347, 54249, 1819, 1;
1, 5811, 309742, 2353021, 4440834, 2353021, 309742, 5811, 1;
1, 18167, 1684634, 21025310, 67447952, 67447952, 21025310, 1684634, 18167, 1;
-
p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
Table[CoefficientList[p[x,n,3,-3,1], x], {n,0,10}]//Flatten (* modified by G. C. Greubel, Mar 31 2022 *)
-
def A168552(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
flatten([[A168552(n,k,3,-3,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 31 2022
Showing 1-4 of 4 results.