A142459 Triangle read by rows: T(n,k) = (4n-4k+1) * T(n-1,k-1) + (4k-3) * T(n-1,k).
1, 1, 1, 1, 10, 1, 1, 59, 59, 1, 1, 308, 1062, 308, 1, 1, 1557, 13562, 13562, 1557, 1, 1, 7806, 148527, 352612, 148527, 7806, 1, 1, 39055, 1500669, 7108915, 7108915, 1500669, 39055, 1, 1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 10, 1; 1, 59, 59, 1; 1, 308, 1062, 308, 1; 1, 1557, 13562, 13562, 1557, 1; 1, 7806, 148527, 352612, 148527, 7806, 1; 1, 39055, 1500669, 7108915, 7108915, 1500669, 39055, 1; 1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened).
- Nick Early, Honeycomb tessellations and canonical bases for permutohedral blades, arXiv:1810.03246 [math.CO], 2018.
- G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_4(n,k).
Programs
-
Maple
A142459 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (4*n-4*k+1)*procname(n-1, k-1)+(4*k-3)*procname(n-1, k) ; end if; end proc: seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2012
-
Mathematica
T[n_, 1]:= 1; T[n_, n_]:= 1; T[n_, k_]:= (4*n -4*k +1)*T[n-1, k-1] + (4*k - 3)*T[n-1, k]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
-
Sage
@CachedFunction def T(n, k): if (k==1 or k==n): return 1 else: return (4*k-3)* T(n-1, k) + (4*(n-k)+1)*T(n-1, k-1) [[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Mar 12 2020
Formula
From Peter Bala, Feb 22 2011: (Start)
E.g.f: sqrt[u^2*(1-u)*exp(2*(u+1)*t)/(exp(4*u*t)-u*exp(4*t))] = Sum_{n >= 1} R(n,u)*t^n/n! = u + (u+u^2)*t + (u+10*u^2+u^3)*t^3/3! + ....
The row polynomials R(n,u) are related to the row polynomials P(n,u) of A186492 via R(n+1,u) = (-i)^n *(1-u)^n *P(n,i*(1+u)/(1-u)), where i = sqrt(-1). (End)
Extensions
Edited by the Assoc. Eds. of the OEIS, Mar 25 2010
Edited by N. J. A. Sloane, May 11 2013
Comments