cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142459 Triangle read by rows: T(n,k) = (4n-4k+1) * T(n-1,k-1) + (4k-3) * T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 59, 59, 1, 1, 308, 1062, 308, 1, 1, 1557, 13562, 13562, 1557, 1, 1, 7806, 148527, 352612, 148527, 7806, 1, 1, 39055, 1500669, 7108915, 7108915, 1500669, 39055, 1, 1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Row sums are A001813.
This is the case m=4 of a group of triangles defined by the recursion T(n,k,m) = (m*n-m*k+1) *T(n-1,k-1) + (m*k-m+1)* T(n - 1, k).

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     10,        1;
  1,     59,       59,         1;
  1,    308,     1062,       308,         1;
  1,   1557,    13562,     13562,      1557,         1;
  1,   7806,   148527,    352612,    148527,      7806,        1;
  1,  39055,  1500669,   7108915,   7108915,   1500669,    39055,      1;
  1, 195304, 14482396, 123929944, 241703110, 123929944, 14482396, 195304, 1;
		

Crossrefs

Programs

  • Maple
    A142459 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (4*n-4*k+1)*procname(n-1, k-1)+(4*k-3)*procname(n-1, k) ; end if; end proc:
    seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2012
  • Mathematica
    T[n_, 1]:= 1; T[n_, n_]:= 1; T[n_, k_]:= (4*n -4*k +1)*T[n-1, k-1] + (4*k - 3)*T[n-1, k]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==1 or k==n): return 1
        else: return (4*k-3)* T(n-1, k) + (4*(n-k)+1)*T(n-1, k-1)
    [[T(n, k) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Mar 12 2020

Formula

From Peter Bala, Feb 22 2011: (Start)
E.g.f: sqrt[u^2*(1-u)*exp(2*(u+1)*t)/(exp(4*u*t)-u*exp(4*t))] = Sum_{n >= 1} R(n,u)*t^n/n! = u + (u+u^2)*t + (u+10*u^2+u^3)*t^3/3! + ....
The row polynomials R(n,u) are related to the row polynomials P(n,u) of A186492 via R(n+1,u) = (-i)^n *(1-u)^n *P(n,i*(1+u)/(1-u)), where i = sqrt(-1). (End)

Extensions

Edited by the Assoc. Eds. of the OEIS, Mar 25 2010
Edited by N. J. A. Sloane, May 11 2013