A142460 Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 5.
1, 1, 1, 1, 12, 1, 1, 83, 83, 1, 1, 514, 1826, 514, 1, 1, 3105, 28310, 28310, 3105, 1, 1, 18656, 376615, 905920, 376615, 18656, 1, 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1, 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 12, 1; 1, 83, 83, 1; 1, 514, 1826, 514, 1; 1, 3105, 28310, 28310, 3105, 1; 1, 18656, 376615, 905920, 376615, 18656, 1; 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1; 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_5(n,k).
Crossrefs
Programs
-
Maple
A142460 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (5*n-5*k+1)*procname(n-1, k-1)+(5*k-4)*procname(n-1, k) ; end if; end proc: seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2013
-
Mathematica
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ]; Table[T[n, k, 5], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
-
Sage
def T(n,k,m): # A142460 if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m) flatten([[T(n,k,5) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022
Formula
T(n, k, m) = (m*n - m*k + 1)*T(n-1, k-1, m) + (m*k - (m-1))*T(n-1, k, m), with T(t,1,m) = T(n,n,m) = 1, and m = 5.
Sum_{k=1..n} T(n, k, 5) = A047055(n-1).
Extensions
Edited by N. J. A. Sloane, May 08 2013, May 11 2013
Comments