cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142460 Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 5.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 83, 83, 1, 1, 514, 1826, 514, 1, 1, 3105, 28310, 28310, 3105, 1, 1, 18656, 376615, 905920, 376615, 18656, 1, 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1, 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

One of a family of triangles. For m = ...,-2,-1,0,1,2,3,4,5,... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142560, ...

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     12,        1;
  1,     83,       83,         1;
  1,    514,     1826,       514,         1;
  1,   3105,    28310,     28310,      3105,         1;
  1,  18656,   376615,    905920,    376615,     18656,        1;
  1, 111967,  4627821,  22403635,  22403635,   4627821,   111967,      1;
  1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1;
		

Crossrefs

Cf. A225372 (m=-2), A144431 (m=-1), A007318 (m=0), A008292 (m=1), A060187 (m=2), A142458 (m=3), A142459 (m=4), this sequence (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9).
Cf. A047055 (row sums).

Programs

  • Maple
    A142460 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (5*n-5*k+1)*procname(n-1, k-1)+(5*k-4)*procname(n-1, k) ; end if; end proc:
    seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2013
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
    Table[T[n, k, 5], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
  • Sage
    def T(n,k,m): # A142460
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    flatten([[T(n,k,5) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022

Formula

T(n, k, m) = (m*n - m*k + 1)*T(n-1, k-1, m) + (m*k - (m-1))*T(n-1, k, m), with T(t,1,m) = T(n,n,m) = 1, and m = 5.
Sum_{k=1..n} T(n, k, 5) = A047055(n-1).

Extensions

Edited by N. J. A. Sloane, May 08 2013, May 11 2013