A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0
Examples
Array, t(n, k), begins as: 1, 2, 4, 8, 16, 32, 64, ...; 2, 12, 52, 196, 684, 2276, 7340, ...; 4, 52, 416, 2644, 14680, 74652, 357328, ...; 8, 196, 2644, 26440, 220280, 1623964, 10978444, ...; 16, 684, 14680, 220280, 2643360, 27227908, 251195000, ...; 32, 2276, 74652, 1623964, 27227908, 381190712, 4677894984, ...; 64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...; Triangle, T(n, k), begins as: 1; 2, 2; 4, 12, 4; 8, 52, 52, 8; 16, 196, 416, 196, 16; 32, 684, 2644, 2644, 684, 32; 64, 2276, 14680, 26440, 14680, 2276, 64; 128, 7340, 74652, 220280, 220280, 74652, 7340, 128; 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- L. Carlitz and R. Scoville, Generalized Eulerian numbers: combinatorial applications, J. für die reine und angewandte Mathematik, 265 (1974): 110-37. See Section 3.
- Dale Gerdemann, A256890, Plot of t(m,n) mod k , YouTube, 2015.
- Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018-2019.
Crossrefs
Programs
-
Magma
A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >; [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
-
Mathematica
Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
-
PARI
t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1))); tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
-
SageMath
def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1)) flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022
Formula
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)
Comments