A168296 Worpitzky form polynomials for the {1,16,1} A142462 sequence: p(x,n) = Sum_{k=1..n} A(n, k)*binomial(x + k - 1, n - 1).
1, 1, 2, 2, 18, 18, 6, 156, 432, 288, 24, 792, 7416, 13248, 6624, 120, -11280, 64800, 374400, 496800, 198720, 720, -62640, -1254960, 4968000, 20865600, 22057920, 7352640, 5040, 24012000, -11854080, -125677440, 389491200, 1288103040, 1132306560, 323516160
Offset: 1
Examples
Triangle begins: {1}, {1, 2}, {2, 18, 18}, {6, 156, 432, 288}, {24, 792, 7416, 13248, 6624}, {120, -11280, 64800, 374400, 496800, 198720}, {720, -62640, -1254960, 4968000, 20865600, 22057920, 7352640}, {5040, 24012000, -11854080, -125677440, 389491200, 1288103040, 1132306560, 323516160}, ...
Crossrefs
Cf. A142462.
Programs
-
Mathematica
(* Worpitzky form polynomials for A142462 *) m = 7; A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]; a = Table[A[n, k], {n, 10}, {k, n}]; p[x_, n_] = Sum[a[[n, k]]*Binomial[x + k - 1, n - 1], {k, 1, n}]; Table[CoefficientList[Expand[(n - 1)!*p[x, n]], x], {n, 1, 10}]; Flatten[%]
Formula
p(x,n) = Sum_{k=1..n} A(n, k)*binomial(x + k - 1, n - 1).
Comments