cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142462 Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 7.

Original entry on oeis.org

1, 1, 1, 1, 16, 1, 1, 143, 143, 1, 1, 1166, 4290, 1166, 1, 1, 9357, 90002, 90002, 9357, 1, 1, 74892, 1621383, 3960088, 1621383, 74892, 1, 1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1, 1, 4793482, 431017552, 3923731798, 7780238494, 3923731798, 431017552, 4793482, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     16,        1;
  1,    143,      143,         1;
  1,   1166,     4290,      1166,         1;
  1,   9357,    90002,     90002,      9357,        1;
  1,  74892,  1621383,   3960088,   1621383,    74892,      1;
  1, 599179, 27016857, 134142043, 134142043, 27016857, 599179, 1;
		

Crossrefs

For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, ...
Cf. A084947 (row sums).

Programs

  • Magma
    function T(n,k,m)
      if k eq 1 or k eq n then return 1;
      else return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m);
      end if; return T;
    end function;
    A142462:= func< n,k | T(n,k,7) >;
    [A142462(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 17 2022
    
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n,  1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
    A142462[n_, k_]:= T[n,k,7];
    Table[A142462[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A142462(n,k): return T(n,k,7)
    flatten([[ A142462(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 7.
Sum_{k=1..n} T(n, k) = A084947(n-1).

Extensions

Edited by N. J. A. Sloane, May 08 2013