cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142470 Triangle T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 30, 30, 1, 1, 80, 300, 80, 1, 1, 175, 1750, 1750, 175, 1, 1, 336, 7350, 19600, 7350, 336, 1, 1, 588, 24696, 144060, 144060, 24696, 588, 1, 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1, 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1
Offset: 0

Views

Author

Roger L. Bagula, Sep 20 2008

Keywords

Comments

Row sums are 1, 2, 10, 62, 462, 3852, 34974, 338690, 3452306, 36683660, 403472368, ...
From Peter Bala, May 08 2012: (Start)
Define the action of the operator L on a sequence { a(i) }{0<=i<=n} by L{ a(i) }{0<=i<=n} = { a(i)^2 - a(i-1)*a(i+1) }_{0<=i<=n} with the conventions a(-1) = a(n+1) = 0. Extend the action of L to a lower triangular array T by letting L act on the rows of T. Then L acting on Pascal's triangle A007318 produces the triangle of Narayana numbers A001263 and L applied to A001263 produces the present triangle.
Since the Narayana polynomials are real-rooted it follows by a theorem of Branden that the row polynomials of this array are also real-rooted.
(End)

Examples

			The triangle begins as:
  1;
  1,    1;
  1,    8,      1;
  1,   30,     30,       1;
  1,   80,    300,      80,        1;
  1,  175,   1750,    1750,      175,        1;
  1,  336,   7350,   19600,     7350,      336,       1;
  1,  588,  24696,  144060,   144060,    24696,     588,      1;
  1,  960,  70560,  790272,  1728720,   790272,   70560,    960,    1;
  1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
		

Crossrefs

Programs

  • Magma
    A142470:= func< n,k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >;
    [A142470(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 03 2021
    
  • Mathematica
    f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j,1,2}];
    T[n_, k_]:= Binomial[n, k]*f[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 03 2021 *)
  • Sage
    def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k)
    flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 03 2021

Formula

Let f(n, k) = binomial(n, k)*Product_{j=1.2} ( j!*(n+j)!/((k+j)!*(n-k+j)!) ), then T(n, k) = 2^(k-n)*f(n, k)*Sum_{j=k..n} binomial(n, j)*binomial(j, k) = binomial(n, k)*f(n, k).
From Peter Bala, May 08 2012: (Start)
T(n, k) = C(n, k)^2 * Product {i=1..2} i!*(n+i)!/((k+i)!*(n-k+i)!) = C(n, k)*C(n+2, k)*C(n+2, k+1)*C(n+2, k+2)/(C(n+2, 1)*C(n+2, 2)).
T(n, k) = 2/((n+1)*(n+2)*(n+3))*C(n, k)*C(n+1, k)*C(n+2, k+2)*C(n+3, k+1) = C(n, k)*A056939(n, k).
(End)
T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k). - G. C. Greubel, Apr 03 2021

Extensions

Edited by G. C. Greubel, Apr 03 2021