A142470 Triangle T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k), read by rows.
1, 1, 1, 1, 8, 1, 1, 30, 30, 1, 1, 80, 300, 80, 1, 1, 175, 1750, 1750, 175, 1, 1, 336, 7350, 19600, 7350, 336, 1, 1, 588, 24696, 144060, 144060, 24696, 588, 1, 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1, 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1
Offset: 0
Examples
The triangle begins as: 1; 1, 1; 1, 8, 1; 1, 30, 30, 1; 1, 80, 300, 80, 1; 1, 175, 1750, 1750, 175, 1; 1, 336, 7350, 19600, 7350, 336, 1; 1, 588, 24696, 144060, 144060, 24696, 588, 1; 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1; 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Petter Brändén, Iterated sequences and the geometry of zeros, arXiv:0909.1927 [math.CO], 2009-2010; J. Reine Angew. Math. 658 (2011), 115-131.
Programs
-
Magma
A142470:= func< n,k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >; [A142470(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 03 2021
-
Mathematica
f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j,1,2}]; T[n_, k_]:= Binomial[n, k]*f[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 03 2021 *)
-
Sage
def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 03 2021
Formula
Let f(n, k) = binomial(n, k)*Product_{j=1.2} ( j!*(n+j)!/((k+j)!*(n-k+j)!) ), then T(n, k) = 2^(k-n)*f(n, k)*Sum_{j=k..n} binomial(n, j)*binomial(j, k) = binomial(n, k)*f(n, k).
From Peter Bala, May 08 2012: (Start)
T(n, k) = C(n, k)^2 * Product {i=1..2} i!*(n+i)!/((k+i)!*(n-k+i)!) = C(n, k)*C(n+2, k)*C(n+2, k+1)*C(n+2, k+2)/(C(n+2, 1)*C(n+2, 2)).
T(n, k) = 2/((n+1)*(n+2)*(n+3))*C(n, k)*C(n+1, k)*C(n+2, k+2)*C(n+3, k+1) = C(n, k)*A056939(n, k).
(End)
T(n, k) = ( (k+2)/(2*binomial(k+2, 2)^2) )*binomial(n, k)^2*binomial(n+1, k)*binomial(n+2, k). - G. C. Greubel, Apr 03 2021
Extensions
Edited by G. C. Greubel, Apr 03 2021
Comments