A142472 Triangle T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k), read by rows.
1, -4, 1, 21, -18, 1, -140, 240, -48, 1, 1140, -3150, 1300, -100, 1, -11004, 43620, -29700, 4800, -180, 1, 123074, -650769, 647780, -175175, 13965, -294, 1, -1566928, 10517108, -14190400, 5676160, -764400, 34496, -448, 1, 22390488, -184052520, 319680732, -175091112, 35160048, -2698920, 75600, -648, 1
Offset: 1
Examples
The triangle begins as: 1; -4, 1; 21, -18, 1; -140, 240, -48, 1; 1140, -3150, 1300, -100, 1; -11004, 43620, -29700, 4800, -180, 1; 123074, -650769, 647780, -175175, 13965, -294, 1; -1566928, 10517108, -14190400, 5676160, -764400, 34496, -448, 1; 22390488, -184052520, 319680732, -175091112, 35160048, -2698920, 75600, -648, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A142472:= func< n,k | Binomial(n,k)*(&+[StirlingFirst(n,j)*StirlingFirst(j,k): j in [k..n]]) >; [A142472(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 02 2021
-
Maple
A142472:= (n,k)-> binomial(n,k)*add(Stirling1(n,j)*Stirling1(j,k), j=k..n); seq(seq(A142472(n,k), k=1..n), n=1..12); # G. C. Greubel, Apr 02 2021
-
Mathematica
T[n_, k_]:= Binomial[n, k]*Sum[StirlingS1[n, j]*StirlingS1[j, k], {j, k, n}]; Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Apr 02 2021 *)
-
Sage
def A142472(n,k): return (-1)^(n-k)*binomial(n,k)*sum( stirling_number1(n, j)*stirling_number1(j, k) for j in (k..n) ) flatten([[A142472(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 02 2021
Formula
T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k).
Extensions
Edited by N. J. A. Sloane, Sep 26 2008
Comments