A142586 Binomial transform of A014217.
1, 2, 5, 14, 39, 107, 290, 779, 2079, 5522, 14615, 38579, 101634, 267347, 702455, 1844114, 4838079, 12686507, 33254210, 87141659, 228301839, 598026002, 1566300455, 4101923939, 10741568514, 28126975907, 73647747815, 192833044754, 504884940879, 1321888886747
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,2).
Programs
-
Magma
[1] cat [Lucas(2*n) - 2^(n-1): n in [1..30]]; // G. C. Greubel, Apr 13 2021
-
Maple
1,seq(combinat[fibonacci](2*n+1) +combinat[fibonacci](2*n-1) -2^(n-1), n = 1..30); # G. C. Greubel, Apr 13 2021
-
Mathematica
CoefficientList[Series[(1-3x+2x^2+x^3)/((1-3x+x^2)(1-2x)),{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{5,-7,2},{2,5,14},30]] (* Harvey P. Dale, Aug 08 2011 *)
-
PARI
Vec((1-3*x+2*x^2+x^3)/((1-3*x+x^2)*(1-2*x)) + O(x^30)) \\ Colin Barker, Jun 05 2017
-
Sage
[1]+[lucas_number2(2*n,1,-1) -2^(n-1) for n in (1..30)] # G. C. Greubel, Apr 13 2021
Formula
From R. J. Mathar, Sep 22 2008: (Start)
G.f.: (1 - 3*x + 2*x^2 + x^3)/((1-3*x+x^2)*(1-2*x)).
a(n) = A005248(n) - 2^(n-1), n>0. (End)
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3); a(0)=1, a(1)=2, a(2)=5, a(3)=14. - Harvey P. Dale, Aug 08 2011
a(n) = (-2^(-1+n) + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n) for n > 0. - Colin Barker, Jun 05 2017
Extensions
Edited and extended by R. J. Mathar, Sep 22 2008
Comments