cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142586 Binomial transform of A014217.

Original entry on oeis.org

1, 2, 5, 14, 39, 107, 290, 779, 2079, 5522, 14615, 38579, 101634, 267347, 702455, 1844114, 4838079, 12686507, 33254210, 87141659, 228301839, 598026002, 1566300455, 4101923939, 10741568514, 28126975907, 73647747815, 192833044754, 504884940879, 1321888886747
Offset: 0

Views

Author

Paul Curtz, Sep 21 2008

Keywords

Comments

The second term in the k-th iterated differences is 2, 3, 6, 10, 17, 28, 46, ... = A001610(k+1).

Crossrefs

Programs

  • Magma
    [1] cat [Lucas(2*n) - 2^(n-1): n in [1..30]]; // G. C. Greubel, Apr 13 2021
    
  • Maple
    1,seq(combinat[fibonacci](2*n+1) +combinat[fibonacci](2*n-1) -2^(n-1), n = 1..30); # G. C. Greubel, Apr 13 2021
  • Mathematica
    CoefficientList[Series[(1-3x+2x^2+x^3)/((1-3x+x^2)(1-2x)),{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{5,-7,2},{2,5,14},30]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    Vec((1-3*x+2*x^2+x^3)/((1-3*x+x^2)*(1-2*x)) + O(x^30)) \\ Colin Barker, Jun 05 2017
    
  • Sage
    [1]+[lucas_number2(2*n,1,-1) -2^(n-1) for n in (1..30)] # G. C. Greubel, Apr 13 2021

Formula

From R. J. Mathar, Sep 22 2008: (Start)
G.f.: (1 - 3*x + 2*x^2 + x^3)/((1-3*x+x^2)*(1-2*x)).
a(n) = A005248(n) - 2^(n-1), n>0. (End)
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3); a(0)=1, a(1)=2, a(2)=5, a(3)=14. - Harvey P. Dale, Aug 08 2011
a(n) = (-2^(-1+n) + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n) for n > 0. - Colin Barker, Jun 05 2017

Extensions

Edited and extended by R. J. Mathar, Sep 22 2008