cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142596 Triangle T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1), with T(n,1) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 66, 126, 66, 1, 1, 201, 576, 576, 201, 1, 1, 606, 2331, 3456, 2331, 606, 1, 1, 1821, 8811, 17361, 17361, 8811, 1821, 1, 1, 5466, 31896, 78516, 104166, 78516, 31896, 5466, 1, 1, 16401, 112086, 331236, 548046, 548046, 331236, 112086, 16401, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 22 2008

Keywords

Examples

			The triangle begins as:
  1;
  1,     1;
  1,     6,      1;
  1,    21,     21,      1;
  1,    66,    126,     66,      1;
  1,   201,    576,    576,    201,      1;
  1,   606,   2331,   3456,   2331,    606,      1;
  1,  1821,   8811,  17361,  17361,   8811,   1821,      1;
  1,  5466,  31896,  78516, 104166,  78516,  31896,   5466,     1;
  1, 16401, 112086, 331236, 548046, 548046, 331236, 112086, 16401, 1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 13 2021
    
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==1 || k==n, 1, T[n-1, k-1] +3*T[n-1, k] +2*T[n-1, k-1]];
    Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): return 1 if k==1 or k==n else T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1)
    flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 13 2021

Formula

T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1), with T(n,1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = (6^(n-1) + 4)/5 = A047851(n-1). - G. C. Greubel, Apr 13 2021

Extensions

Edited by G. C. Greubel, Apr 13 2021