A142596 Triangle T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1), with T(n,1) = T(n, n) = 1, read by rows.
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 66, 126, 66, 1, 1, 201, 576, 576, 201, 1, 1, 606, 2331, 3456, 2331, 606, 1, 1, 1821, 8811, 17361, 17361, 8811, 1821, 1, 1, 5466, 31896, 78516, 104166, 78516, 31896, 5466, 1, 1, 16401, 112086, 331236, 548046, 548046, 331236, 112086, 16401, 1
Offset: 1
Examples
The triangle begins as: 1; 1, 1; 1, 6, 1; 1, 21, 21, 1; 1, 66, 126, 66, 1; 1, 201, 576, 576, 201, 1; 1, 606, 2331, 3456, 2331, 606, 1; 1, 1821, 8811, 17361, 17361, 8811, 1821, 1; 1, 5466, 31896, 78516, 104166, 78516, 31896, 5466, 1; 1, 16401, 112086, 331236, 548046, 548046, 331236, 112086, 16401, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
function T(n,k) if k eq 1 or k eq n then return 1; else return T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 13 2021
-
Mathematica
T[n_, k_]:= T[n,k]= If[k==1 || k==n, 1, T[n-1, k-1] +3*T[n-1, k] +2*T[n-1, k-1]]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 13 2021 *)
-
Sage
@CachedFunction def T(n,k): return 1 if k==1 or k==n else T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1) flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 13 2021
Formula
T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1), with T(n,1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = (6^(n-1) + 4)/5 = A047851(n-1). - G. C. Greubel, Apr 13 2021
Extensions
Edited by G. C. Greubel, Apr 13 2021