cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142978 Table of figurate numbers for the n-dimensional cross polytopes.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 19, 16, 5, 1, 10, 33, 44, 25, 6, 1, 12, 51, 96, 85, 36, 7, 1, 14, 73, 180, 225, 146, 49, 8, 1, 16, 99, 304, 501, 456, 231, 64, 9, 1, 18, 129, 476, 985, 1182, 833, 344, 81, 10
Offset: 1

Views

Author

Peter Bala, Jul 15 2008

Keywords

Comments

The n-th row entries for this array are the regular polytope numbers for the n-dimensional cross polytope as defined by [Kim]. The rows are the partial sums of the rows of the square array of Delannoy numbers A008288.
The odd numbered rows of this array form A142977. For a triangular version of this table see A104698. Cf. also A101603.
The n-th row of the array is the binomial transform of n-th row of triangle A081277, followed by zeros. Example: row 4 (1, 6, 19, 44, 85, ...) = binomial transform of row 3 of A081277: (1, 5, 8, 4, 0, 0, 0, ...). - Gary W. Adamson, Jul 17 2008
The main diagonal of the array T(n,k) is A047781 Sum_{k=0..n-1} binomial(n-1,k)*binomial(n+k,k). Also a(n) = T(n,n), array T as in A049600. The link from A099193 to J. V. Post, Table of polytope numbers, Sorted, Through 1,000,000, includes all n-D Hyperoctahedron (n-Cross Polytope) Numbers through 10-Cross(20) = 1669752016. - Jonathan Vos Post, Jul 16 2008

Examples

			The square array A(n, k) begins:
  n\k| 1   2    3     4     5       6
  ---+-------------------------------
   1 | 1   2    3     4      5      6    A000027
   2 | 1   4    9    16     25     36    A000290
   3 | 1   6   19    44     85    146    A005900
   4 | 1   8   33    96    225    456    A014820
   5 | 1  10   51   180    501   1182    A069038
   6 | 1  12   73   304    985   2668    A069039
   7 | 1  14   99   476   1765   5418    A099193
		

Crossrefs

Cf. A008288 (Delannoy numbers), A005900 (row 3), A014820 (row 4), A069038 (row 5), A069039 (row 6), A099193 (row 7), A099195 (row 8), A099196 (row 9), A099197 (row 10), A101603, A104698 (triangle version), A142977, A142983.

Programs

  • Haskell
    a142978 n k = a142978_tabl !! (n-1) !! (k-1)
    a142978_row n = a142978_tabl !! (n-1)
    a142978_tabl = map reverse a104698_tabl
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    with(combinat): T:=(n,k) -> add(binomial(n-1,i)*binomial(k+i,n),i = 0..n-1); for n from 1 to 10 do seq(T(n,k),k = 1..10) end do; # Program restored by Peter Bala, Oct 02 2008
    A := (n, k) -> k*hypergeom([1 - n, 1 - k], [2], 2):
    seq(print(seq(simplify(A(n, k)), k = 1..9)), n=1..7); # Peter Luschny, Mar 23 2023
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n-1, i]*Binomial[k+i, n], {i, 0, n-1}]; Table[t[n-k, k], {n, 1, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)

Formula

T(n,k) = Sum_{i = 0..n-1} C(n-1,i)*C(k+i,n).
Reciprocity law: n*T(n,k) = k*T(k,n).
Recurrence relation: T(n,1) = 1, T(1,k) = k, T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k), n,k > 1.
O.g.f. row n: x*(1 + x)^(n-1)/(1 - x)^(n+1).
O.g.f. for array: Sum_{n >= 1, k >= 1} T(n, k)*x^k*y^n = x*y/((1 - x)*(1 - x - y - x*y)).
The n-th row entries are the values [p_n(k)], k >= 1, of the polynomial function p_n(x) = Sum_{k = 1..n} 2^(k-1)*C(n-1,k-1)*C(x,k). The first few values are p_1(x) = x, p_2(x) = x^2, p_3(x) = (2*x^3 + x)/3 and p_4(x) = (x^4 + 2*x^2)/3.
The polynomial p_n(x) is the unique polynomial solution of the difference equation x*( f(x+1) - f(x-1) ) = 2*n*f(x), normalized so that f(1) = 1.
The o.g.f. for the p_n(x) is 1/2*((1 + t)/(1 - t))^x = 1/2 + x*t + x^2*t^2 + (2*x^3 + x)/3*t^3 + .... Thus p_n(x) is, apart from a constant factor, the Meixner polynomial of the first kind M_n(x;b,c) at b = 0, c = -1, also known as a Mittag-Leffler polynomial.
The entries in the n-th row appear in the series acceleration formula for the constant log(2): Sum_{k >= 1} (-1)^(k+1)/(T(n,k)*T(n,k+1)) = 1 + (-1)^(n+1) * (2*n)*(log(2) - (1 - 1/2 + 1/3 - ... + (-1)^(n+1)/n)). For example, n = 3 gives log(2) = 4/6 + (1/6)*(1/(1*6) - 1/(6*19) + 1/(19*44) - 1/(44*85) + ...). See A142983 for further details.
From Peter Bala, Oct 02 2008: (Start)
The odd-indexed columns of this array form the array A142992 of crystal ball sequences for lattices of type C_n.
Conjectural congruences for main diagonal entries: Put A(n) = T(n,n). Calculation suggests the following congruences: for prime p > 3 and m, r >= 1, A(m*p^r) == A(m*p^(r-1)) (mod p^(3*r));
Sum_{k = 0..p-1} A(k)^2 == 0 (mod p) if p is a prime of the form 8*n+1 or 8*n+7;
Sum_{k = 0..p-1} A(k)^2 == -1 (mod p) if p is a prime of the form 8*n+3 or 8*n+5.
(End)
From Peter Bala, Sep 27 2021: (Start)
T(n,k) = (1/2)*Sum_{i = 0..k} binomial(k,i)*binomial(n+k-1-i,k-1).
T(n,k) = (1/2)*[x^n] ((1+x)/(1-x))^k = (1/2)*(k/n)*[x^k] ((1+x)/(1-x))^n.
n*T(n,k) = 2*k*T(n-1,k) + (n - 2)*T(n-2,k). (End)
A(n,k) = k*hypergeom([1 - n, 1 - k], [2], 2). - Peter Luschny, Mar 23 2023
T(n,k) = 2*(Sum_{j=1..k-1} T(n-1,j)) + T(n-1,k) for n > 1. - Robert FERREOL, Jun 25 2024