cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A142983 a(1) = 1, a(2) = 2, a(n+2) = 2*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 2, 10, 44, 288, 1896, 15888, 137952, 1419840, 15255360, 186693120, 2387093760, 33898314240, 502247692800, 8123141376000, 136785729024000, 2483065912320000, 46822564905984000, 942853671825408000, 19678282007924736000, 435355106182520832000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 1 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of the series 1/2 + 1/2*Sum_{k > 1} (-1)^(k+1)/(k*(k + 1)) = log(2). For other cases see A142984 (m = 2), A142985 (m = 3), A142986 (m = 4) and A142987 (m = 5).
The solution to the general recurrence may be expressed as a sum: a(n) = n!*p_m(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p_m(k)*p_m(k+1)), where p_m(x) = Sum_{k = 1..m} 2^(k-1)*C(m-1,k-1)*C(x,k) is the polynomial that gives the regular polytope numbers for the m-dimensional cross polytope as defined by [Kim] (see A142978). The first few values are p_1(x) = x, p_2(x) = x^2, p_3(x) = (2*x^3 + x)/3 and p_4(x) = (x^4 + 2*x^2)/3.
The polynomial p_m(x) is the unique polynomial solution of the difference equation x*(f(x+1) - f(x-1)) = 2*m*f(x), normalized so that f(1) = 1.
The o.g.f. for the p_m(x) is 1/2*((1 + t)/(1 - t))^x = 1/2 + x*t + x^2*t^2 + (2*x^3 + x)/3*t^3 + .... Thus p_m(x) is, apart from a constant factor, the Meixner polynomial of the first kind M_m(x;b,c) at b = 0, c = -1, also known as a Mittag-Leffler polynomial.
The general recurrence in the first paragraph above has a second solution b(n) = n!*p_m(n+1) with b(1) = 2*m, b(2) = m^2 + 2. Hence the behavior of a(n) for large n is given by Limit_{n-> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p_m(k)*p_m(k+1)) = 1/((2*m) + 1*2/((2*m) + 2*3/((2*m) + 3*4/((2*m) + ... + n*(n + 1)/((2*m) + ...))))) = 1 + (-1)^(m+1) * (2*m)*(log(2) - (1 - 1/2 + 1/3 - ... + (-1)^(m+1)/m)), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).
See A142979, A142988 and A142992 for similar results. For corresponding results for Napier's constant e, the constant zeta(2) and Apery's constant zeta(3) refer to A000522, A142995 and A143003, respectively.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142983 n = a142983_list !! (n-1)
    a142983_list = 1 : 2 : zipWith (+)
                           (map (* 2) $ tail a142983_list)
                           (zipWith (*) (drop 2 a002378_list) a142983_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    a := n -> (n+1)!*sum ((-1)^(k+1)/(k*(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    Rest[CoefficientList[Series[(-x+2*Log[x+1])/(x-1)^2,{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Oct 21 2012 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = n.
Recurrence: a(1) = 1, a(2) = 2, a(n+2) = 2*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 2 and b(2) = 6.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(2 + 1*2/(2 + 2*3/(2 + 3*4/(2 + ... + (n - 1)*n/2)))), for n >= 2.
The behavior of a(n) for large n is given by Limit_{n -> oo} a(n)/b(n) = 1/(2 + 1*2/(2 + 2*3/(2 + 3*4/(2 + ... + n*(n+1)/(2 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(k + 1)) = 2*log(2) - 1.
E.g.f.: (2*log(x+1)-x)/(x-1)^2. - Vaclav Kotesovec, Oct 21 2012

A142984 a(1) = 1, a(2) = 4, a(n+2) = 4*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 4, 22, 136, 984, 8016, 73392, 742464, 8254080, 99838080, 1307301120, 18407831040, 277570298880, 4460506444800, 76131788544000, 1375048700928000, 26208041287680000, 525597067634688000, 11065538390925312000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 2 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142984 n = a142984_list !! (n-1)
    a142984_list = 1 : 4 : zipWith (+)
                           (map (* 4) $ tail a142984_list)
                           (zipWith (*) (drop 2 a002378_list) a142984_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    a := n -> n!*(n+1)^2*sum ((-1)^(k+1)/(k^2*(k+1)^2), k = 1..n): seq(a(n), n = 1..20);

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = n^2.
Recurrence: a(1) = 1, a(2) = 4, a(n+2) = 4*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 4 and b(2) = 18.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(4 + 1*2/(4 + 2*3/(4 + 3*4/(4 + ... + n*(n - 1)/(4))))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k^2*(k + 1)^2) = 1/(4 + 1*2/(4 + 2*3/(4 + 3*4/(4 + ... + n*(n - 1)/(4 + ...))))) = 3 - 4*log(2), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).
a(n) = n! * (((-1)^n * (2 * Psi(n/2 + 1) - 2 * Psi(n/2 + 3/2)) - 4 * log(2) + 3) * (n+1)^2 + (-1)^n * (2 * n + 1)). - Robert Israel, Mar 07 2024

A142986 a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 8, 70, 656, 6648, 72864, 862128, 10977408, 149892480, 2187106560, 33985025280, 560578268160, 9786290088960, 180315565516800, 3497645442816000, 71256899266560000, 1521414754578432000, 33975929212194816000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 4 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142986 n = a142986_list !! (n-1)
    a142986_list = 1 : 8 : zipWith (+)
                           (map (* 8) $ tail a142986_list)
                           (zipWith (*) (drop 2 a002378_list) a142986_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    p := n -> (n^4+2*n^2)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==8,a[n]==8a[n-1]+n(n-1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Apr 08 2015 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (n^4 + 2*n^2)/3 = A014820(n).
Recurrence: a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 8 and b(2) = 66.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(8 + 1*2/(8 + 2*3/(8 + 3*4/(8 + ... + n*(n - 1)/8)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(8 + 1*2/(8 + 2*3/(8 + 3*4/(8 + ... + n*(n - 1)/(8 + ...))))) = 17/3 - 8*log(2), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).

A142987 a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 10, 106, 1180, 13920, 174600, 2330640, 33084000, 498646080, 7964020800, 134491276800, 2396163513600, 44942274316800, 885524502643200, 18293122632960000, 395457106963968000, 8930300425804800000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 5 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142987 n = a142987_list !! (n-1)
    a142987_list = 1 : 10 : zipWith (+)
                            (map (* 10) $ tail a142987_list)
                            (zipWith (*) (drop 2 a002378_list) a142987_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    p := n -> (2*n^5+10*n^3+3*n)/15: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==10,a[n+2]==10a[n+1]+(n+1)(n+2)a[n]},a,{n,20}] (* Harvey P. Dale, Mar 23 2021 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (2*n^5 + 10*n^3 + 3*n)/15 = A069038(n).
Recurrence: a(1) = 1, a(2) = 10, a(n+2) = 10*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 10 and b(2) = 102.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(10 + 1*2/(10 + 2*3/(10 + 3*4/(10 + .. +n*(n - 1)/(10))))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(10 + 1*2/(10 + 2*3/(10 + 3*4/(10 + ... + n*(n - 1)/(10 + ...))))) = 10*log(2) - 41/6, where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).
Showing 1-4 of 4 results.