cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173435 Inverse binomial transform of A143025, assuming offset zero there.

Original entry on oeis.org

8, -6, 12, -25, 52, -106, 212, -420, 832, -1656, 3312, -6640, 13312, -26656, 53312, -106560, 212992, -425856, 851712, -1703680, 3407872, -6816256, 13632512, -27264000, 54525952, -109049856, 218099712, -436203520, 872415232, -1744838656, 3489677312, -6979338240
Offset: 0

Views

Author

Paul Curtz, Feb 18 2010

Keywords

Comments

Inverse binomial transform of 8, 2, 8, 1, 8, 2 ,8, 1,... with a(0)=8, a(1)=2 etc.

Programs

  • Mathematica
    Join[{8},LinearRecurrence[{-4,-6,-4},{-6,12,-25},40]] (* Harvey P. Dale, Sep 25 2013 *)

Formula

a(n)= -4*a(n-1) -6*a(n-2) -4*a(n-3), n>3. G.f.: (26*x+36*x^2+19*x^3+8)/( (2*x+1) * (2*x^2+2*x+1)). [R. J. Mathar, Mar 10 2010]
a(n+1) +2*a(n) = (-1)^(n+1)*A009545(n-1), n > 0.

Extensions

Extended by R. J. Mathar, Mar 10 2010

A243883 Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.

Original entry on oeis.org

5, 1, 13, 5, 29, 5, 53, 17, 85, 13, 125, 37, 173, 25, 229, 65, 293, 41, 365, 101, 445, 61, 533, 145, 629, 85, 733, 197, 845, 113, 965, 257, 1093, 145, 1229, 325, 1373, 181, 1525, 401, 1685, 221, 1853, 485, 2029, 265, 2213, 577, 2405, 313, 2605, 677, 2813, 365, 3029
Offset: 1

Views

Author

Kival Ngaokrajang, Jun 13 2014

Keywords

Comments

Denominator of circle radius r(n) is A143025(n+2). The integral radius appearing at n = 2, 6, 10, 14, ..., = 1, 5, 13, 25, ..., respectively which is A001844(n/4 - 1/2). Floor (r(n)) = A001971(n). For the case of sagitta = n and chord length = 1, the numerator and the denominator will be A053755(n) and A008590(n) respectively. See illustration in links.

Crossrefs

Programs

  • PARI
    a(n) = numerator(n^2/8+1/2);

Formula

a(n) = numerator(n^2/8 + 1/2).
Empirical g.f.: -x*(x^11 +5*x^10 +x^9 +13*x^8 +2*x^7 +14*x^6 +2*x^5 +14*x^4 +5*x^3 +13*x^2 +x +5) / ((x -1)^3*(x +1)^3*(x^2 +1)^3). - Colin Barker, Jan 17 2015

A152018 Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).

Original entry on oeis.org

9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1

Views

Author

Paul Curtz, Nov 20 2008

Keywords

Comments

The associated terms of the n-th main series of the Hydrogen energy spectrum are A000290(3), A061038(6), A061040(9), A061042(12), A061044(15), A061046(18), A061048(21), A061050(24), etc.
All numbers are multiples of 9.

Crossrefs

Cf. A143025 with a similar principle of construction.
Cf. A291050.

Programs

  • Mathematica
    Denominator/@(8/(9Range[50]^2))  (* Harvey P. Dale, Mar 15 2011 *)

Formula

Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Sep 14 2022

Extensions

Stratified definition, corrected indices, extended, R. J. Mathar, Dec 10 2008

A143024 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle having root (a distinguished node) of degree 1 and having k edges (n >= 2, 1 <= k <= 2n-4).

Original entry on oeis.org

1, 0, 2, 0, 0, 7, 2, 0, 0, 0, 30, 20, 4, 0, 0, 0, 0, 143, 156, 65, 10, 0, 0, 0, 0, 0, 728, 1120, 720, 224, 28, 0, 0, 0, 0, 0, 0, 3876, 7752, 6783, 3192, 798, 84, 0, 0, 0, 0, 0, 0, 0, 21318, 52668, 58520, 36960, 13860, 2904, 264, 0, 0, 0, 0, 0, 0, 0, 0, 120175, 354200, 478170
Offset: 2

Views

Author

Emeric Deutsch, Jul 31 2008

Keywords

Comments

Row n contains 2n-4 terms, the first n-2 of which are 0.
Row sums yield A089436.
T(n,n-1) = A006013(n-2).
Sum_{k=2..2n-4} k*T(n,k) = A143025.

Examples

			T(3,2)=2 because we have {AB,BC} and {AC, BC} (A is the root).
Triangle starts:
  1;
  0,   2;
  0,   0,   7,   2;
  0,   0,   0,  30,  20,   4;
  0,   0,   0,   0, 143, 156,  65,  10;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: 2*binomial(k-2,n-3)*binomial(3*n-5,2*n-k-4)/(n-2) end proc: 1; for n from 3 to 10 do 0, seq(T(n,k),k=2..2*n-4) end do; % yields sequence in triangular form

Formula

T(n,k) = 2*binomial(k-2, n-3)*binomial(3n-5, 2n-k-4)/(n-2) (n >= 3, 2 <= k <= 2n-4); T(2,1)=1; T(2,k)=0 (k >= 2).
The trivariate g.f. G=G(t,s,z) for non-crossing connected graphs on nodes on a circle, with respect to number of nodes (marked by z), number of edges (marked by t) and degree of root (marked by s) is G=z + tszg^2/[z-ts(g - z + g^2)], where g=g(t,z) satisfies tg^3 + tg^2 - (1 + 2t)zg +(1 + t)z^2 = 0 (see Domb & Barrett, Eq. (47); Flajolet & Noy, Eq. (18)).

A173559 a(n)= +2*a(n-2) +4*a(n-3), n>3.

Original entry on oeis.org

1, -6, -13, -27, -50, -106, -208, -412, -840, -1656, -3328, -6672, -13280, -26656, -53248, -106432, -213120, -425856, -851968, -1704192, -3407360, -6816256, -13631488, -27261952, -54528000, -109049856, -218103808, -436211712, -872407040, -1744838656
Offset: 0

Views

Author

Paul Curtz, Feb 21 2010

Keywords

Comments

Generated by scanning the diagonal of the table generated by A143025 in the top row followed by higher order differences in the other rows:
1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8, 1, 8, 2, 8,...
7, -6, 6, -7, 7, -6, 6, -7, 7, -6, 6, -7, 7,...
-13, 12, -13, 14, -13, 12, -13, 14, -13, 12,..
25, -25, 27, -27, 25, -25, 27, -27, 25, -25,..
-50, 52, -54, 52, -50, 52, -54, 52, -50, 52, ...
102, -106, 106, -102, 102, -106, 106, -102,...

Programs

  • Mathematica
    LinearRecurrence[{0,2,4},{1,-6,-13,-27},30] (* Harvey P. Dale, Jan 27 2019 *)

Formula

a(n) = ( -13*2^n-2*A009116(n))/4, n>0.
a(n+1)-2*a(n) = -A137429(n-2), n>1.
G.f.: (6*x+15*x^2+19*x^3-1)/( (2*x-1) *(2*x^2+2*x+1)).
Showing 1-5 of 5 results.