cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143097 3*k - 2 interleaved with 3*k - 1 and 3*k.

Original entry on oeis.org

1, 2, 4, 3, 5, 7, 6, 8, 10, 9, 11, 13, 12, 14, 16, 15, 17, 19, 18, 20, 22, 21, 23, 25, 24, 26, 28, 27, 29, 31, 30, 32, 34, 33, 35, 37, 36, 38, 40, 39, 41, 43, 42, 44, 46, 45, 47, 49, 48, 50, 52, 51, 53, 55, 54, 56, 58, 57, 59, 61, 60, 62, 64, 63, 65, 67, 66
Offset: 1

Views

Author

Gary W. Adamson, Jul 24 2008

Keywords

Comments

First differences give A143098.
Binomial transform = A143099: (1, 3, 9, 22, 50, 113, 256, ...).

Examples

			Interleave 3 subsets:
  1,....4,.......7,......10,......13,......16,...
  ...2,.......5,.......8,......11,......14,...
  .........3,.......6,.......9,......12,...
  ...
		

Crossrefs

Cf. A083220 (n + (n mod 4)). - Zak Seidov, Feb 23 2017

Programs

  • Maple
    A143097 := proc(n) if(n<=1)then return n: elif(n mod 3 <= 1)then return n+1-2*(n mod 3): else return n: fi: end: seq(A143097(n), n=1..70); # Nathaniel Johnston, Apr 30 2011
  • Mathematica
    With[{nn=70},Join[{1},Riffle[Rest[Select[Range[nn],!Divisible[#,3]&]], Range[ 3,nn,3],3]]] (* Harvey P. Dale, May 06 2012 *)
    Table[If[k == 1, 1, k - 1 + Mod[k - 1, 3]], {k, 100}] (* Zak Seidov, Feb 23 2017 *)

Formula

A permutation of the natural numbers: 3*k - 2 interleaved with 3*k - 1 and 3*k; k=1,2,3,...; given a(1) = 1. a(n) = n if the subset = 3*k - 1: (2, 5, 8, ...); a(n) = n+1 in 3*k - 2, k>1: (4, 7, 10, ...); and a(n) = (n-1) in 3*k: (3, 6, 9, ...).
G.f.: x(1+x+2x^2-2x^3+x^4)/((1-x)^2(1+x+x^2)). - R. J. Mathar, Sep 06 2008
a(n) = if(n==1, 1, (n-1) + (n-1) mod 3). - Zak Seidov, Feb 23 2017
For n>1, a(n) = n+2*sin(2*(n+1)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - 2*Pi/(3*sqrt(3)) - log(2)/3. - Amiram Eldar, Aug 21 2023