A143104 Infinite Redheffer matrix read by upwards antidiagonals.
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 1
Examples
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
References
- R. C. Vaughan, On the eigenvalues of Redheffer's matrix I, in: Number Theory with an Emphasis on the Markoff Spectrum (Provo, Utah, 1991), 283-296, Lecture Notes in Pure and Appl. Math., 147, Dekker, New-York, 1993.
Links
- Enrique Pérez Herrero, Rows n = 1..100 of triangle, flattened
- W. B. Barret, R. W. Forcade and A. D. Pollington, On the spectral radius of a (0,1) matrix related to Mertens' Function, Lin. Alg. Applic. 107 (1988) 151-159.
- Olivier Bordellès and Benoit Cloitre, A matrix inequality for Möbius functions, J. Inequal. Pure and Appl. Math., Volume 10 (2009), Issue 3, Article 62, 9 pp.
- Will Dana, Eigenvalues of the Redheffer Matrix and their relation to the Mertens Function, (2015)
- R. M. Redheffer, Eine explizit lösbare Optimierungsaufgabe, Internat. Schiftenreihe Numer. Math., 36 (1977), 213-216.
- T. Tao, The Mobius function is strongly orthogonal to nilsequences
- R. C. Vaughan, On the eigenvalues of Redheffer's matrix, II, J. Austral. Math. Soc. (Series A) 60 (1996), 260-273.
- Eric Weisstein's World of Mathematics, Redheffer Matrix.
- Herbert S. Wilf, The Redheffer matrix of a partially ordered set, arXiv:math/0408263 [math.CO], 2004.
- Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics 11(2) (2004), #R10.
Crossrefs
Programs
-
Excel
=if(mod(column();row())=0;1;if(column()=1;1;0)). Produces the Redheffer matrix.
-
Maple
A143104 := proc(i,j) if modp(j,i) =0 or j = 1 then 1; else 0; end if; end proc: for d from 2 to 10 do for m from d-1 to 1 by -1 do n := d-m ; printf("%d ",A143104(n,m)) ; end do: end do: # R. J. Mathar, Jul 23 2017
-
Mathematica
Redheffer[i_, j_] := Boole[Divisible[i, j] || (i == 1)]; T[n_] := n*(n + 1)/2; S[n_] := Floor[1/2 + Sqrt[2 n]]; j[n_] := 1 + T[S[n]] - n; i[n_] := 1 + S[n] - j[n]; A143104[n_] := Redheffer[i[n], j[n]]; (* Enrique Pérez Herrero, Apr 13 2010 *) a[i_, j_] := If[j == 1 || Divisible[j, i], 1, 0]; Table[a[i-j+1, j], {i, 1, 14}, {j, 1, i}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
-
PARI
{ a(i,j) = (j==1) || (j%i==0); }
Formula
a(i,j) = 1 if j=1 or i|j; 0 otherwise.
Extensions
Edited and extended by Max Alekseyev, Oct 28 2008
Comments