cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143157 Partial sums of A091512.

Original entry on oeis.org

0, 1, 5, 8, 20, 25, 37, 44, 76, 85, 105, 116, 152, 165, 193, 208, 288, 305, 341, 360, 420, 441, 485, 508, 604, 629, 681, 708, 792, 821, 881, 912, 1104, 1137, 1205, 1240, 1348, 1385, 1461, 1500, 1660, 1701, 1785, 1828, 1960, 2005, 2097, 2144, 2384, 2433, 2533, 2584, 2740, 2793, 2901, 2956, 3180
Offset: 0

Views

Author

Gary W. Adamson, Jul 27 2008

Keywords

Examples

			a(4) = 20 = sum of row 4 terms of triangle A143156, (7 + 6 + 4 + 3).
a(4) = 20 = partial sums of first 4 terms of A091512: (1 + 4 + 3 + 12).
a(4) = 20 = Sum_{j=1..4} j*A001511(j) = 1*1 + 2*2 + 3*1 + 4*3.
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Accumulate@ Array[IntegerExponent[(2 #)^#, 2] &, 56] (* Michael De Vlieger, Sep 29 2019 *)
  • Python
    def A143157(n): return sum(i*(~i&i-1).bit_length() for i in range(2,2*n+1,2))>>1 # Chai Wah Wu, Jul 11 2022

Formula

Partial sums of A091512 = Sum_{j>=1} j*A001511(j), where A001511 is the ruler sequence.
Row sums of triangle A143156.
a(n) = A249152(2*n)/2 = A249153(n) / 2. - Antti Karttunen, Oct 25 2014
a(n) = (1/2)*n*(n + 1) + Sum_{i=1..n} i*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Sep 03 2019; Jan 22 2021
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x)^3. - Ilya Gutkovskiy, Oct 30 2019
a(n) ~ n^2. - Amiram Eldar, Sep 10 2024

Extensions

a(0) = 0 prepended and more terms computed by Antti Karttunen, Oct 25 2014
Showing 1-1 of 1 results.