cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A249152 Exponent of 2 in the hyperfactorials: a(n) = A007814(A002109(n)).

Original entry on oeis.org

0, 0, 2, 2, 10, 10, 16, 16, 40, 40, 50, 50, 74, 74, 88, 88, 152, 152, 170, 170, 210, 210, 232, 232, 304, 304, 330, 330, 386, 386, 416, 416, 576, 576, 610, 610, 682, 682, 720, 720, 840, 840, 882, 882, 970, 970, 1016, 1016, 1208, 1208, 1258, 1258, 1362, 1362, 1416, 1416, 1584, 1584, 1642, 1642
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

This is the function ord_2(D*_n) listed in the leftmost column of Table 7.1 in Lagarias & Mehta 2014 paper (on page 19).

Crossrefs

Bisection: A249153.
Cf. A133457 (binary exponents).

Programs

  • Magma
    [0] cat [&+[i*Valuation(i, 2):i in [1..n]]:n in [1..60]]; // Marius A. Burtea, Oct 18 2019
    
  • Maple
    with(padic): seq(add(i*ordp(i, 2), i=1..n), n=0..60); # Ridouane Oudra, Oct 17 2019
  • Mathematica
    Table[i=0;Hyperfactorial@n//.x_/;EvenQ@x:>(i++;x/2);i,{n,0,60}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • PARI
    a(n) = sum(i=1, n, i*valuation(i, 2)); \\ Michel Marcus, Sep 14 2021
    
  • PARI
    a(n) = my(v=binary(n),t=0); forstep(j=#v,1,-1, if(v[j],v[j]=t--,t++)); (n^2 + fromdigits(v,2))>>1; \\ Kevin Ryde, Nov 03 2021
    
  • Python
    def A249152(n): return sum(i*(~i&i-1).bit_length() for i in range(2,n+1,2)) # Chai Wah Wu, Jul 11 2022

Formula

a(n) = 2 * A143157(floor(n/2)).
a(n) = A174605(n) + A187059(n). [Lagarias and Mehta theorem 4.1 for p=2]
a(n) = Sum_{i=1..n} i*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Oct 17 2019
a(n) ~ (n^2+2n)/2 as n -> infinity. - Luca Onnis, Oct 17 2021
a(n) ~ ((A011371(n))^2)/2 as n -> infinity. - Luca Onnis, Nov 02 2021
From Kevin Ryde, Nov 03 2021: (Start)
a(2n) = a(2n+1) = 2*a(n) + n*(n+1).
a(n) = ( n^2 + Sum_{j=1..k} (e[j]-2*j+1) * 2^e[j] )/2, where binary expansion n = 2^e[1] + ... + 2^e[k] with ascending exponents e[1] < e[2] < ... < e[k] (A133457).
(End)
a(n) = Sum_{j=1..floor(log_2(n))} j*2^j*round(n/2^(j+1))^2, for n>=1. - Ridouane Oudra, Oct 01 2022

A249153 Exponent of 2 in the hyperfactorial of 2n: a(n) = A007814(A002109(2n)).

Original entry on oeis.org

0, 2, 10, 16, 40, 50, 74, 88, 152, 170, 210, 232, 304, 330, 386, 416, 576, 610, 682, 720, 840, 882, 970, 1016, 1208, 1258, 1362, 1416, 1584, 1642, 1762, 1824, 2208, 2274, 2410, 2480, 2696, 2770, 2922, 3000, 3320, 3402, 3570, 3656, 3920, 4010, 4194, 4288, 4768, 4866, 5066, 5168, 5480, 5586, 5802, 5912
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Crossrefs

Bisection of A249152.
Cf. A002109, A007814, A143157, A069895 (first differences).

Programs

  • Mathematica
    Table[IntegerExponent[Hyperfactorial[2*n], 2], {n, 0, 55}] (* Amiram Eldar, Sep 10 2024 *)
  • Python
    from sympy import multiplicity
    A249153_list, n = [0], 0
    for i in range(2,20002,2):
        n += multiplicity(2,i)*i
        A249153_list.append(n) # Chai Wah Wu, Aug 21 2015

Formula

a(n) = A249152(2*n) = A007814(A002109(2*n)).
a(n) = 2*A143157(n).
a(n) ~ 2*n^2. - Amiram Eldar, Sep 10 2024

A143156 Triangle read by rows, T(n,k) = Sum_{j=k..n} A001511(j); = A000012 * (A001511 * 0^(n-k)) * A000012; 1<=k<=n.

Original entry on oeis.org

1, 3, 2, 4, 3, 1, 7, 6, 4, 3, 8, 7, 5, 4, 1, 10, 9, 7, 6, 3, 2, 11, 10, 8, 7, 4, 3, 1, 15, 14, 12, 11, 8, 7, 5, 4, 16, 15, 13, 12, 9, 8, 6, 5, 1, 18, 17, 15, 14, 11, 10, 8, 7, 3, 2, 19, 18, 16, 15, 12, 11, 9, 8, 4, 3, 1, 22, 21, 19, 18, 15, 14, 12, 11, 7, 6, 4, 3
Offset: 1

Views

Author

Gary W. Adamson, Jul 27 2008

Keywords

Comments

Row sums give A143157.
Left border gives A005187.
Right border gives A001511.

Examples

			First few rows of the triangle =
        k=1 k=2 k=3 k=4 k=5 k=6 k=7
  n=1:   1;
  n=2:   3,  2;
  n=3:   4,  3,  1;
  n=4:   7,  6,  4,  3;
  n=5:   8,  7,  5,  4,  1;
  n=6:  10,  9,  7,  6,  3,  2;
  n=7:  11, 10,  8,  7,  4,  3,  1;
  ...
Row 6 = (10, 9, 7, 6, 3, 2) = partial sums of the first 6 terms of the ruler sequence, starting from the right: (1, 2, 1, 3, 1, 2,...).
		

Crossrefs

Programs

  • PARI
    T(n,k) = k--; 2*(n-k) - hammingweight(n) + hammingweight(k); \\ Kevin Ryde, Oct 07 2021

Formula

Triangle read by rows, T(n,k) = Sum_{j=k..n} A001511(j); = A000012 * (A001511 * 0^(n-k)) * A000012; 1<=k<=n.
From Kevin Ryde, Oct 07 2021: (Start)
T(n,k) = A005187(n) - A005187(k-1).
G.f.: (V(x) - V(x*y)) * y/((1-x)*(1-y)) where V(x) is the g.f. of A001511.
(End)
Showing 1-3 of 3 results.