cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069895 2^a(n) divides (2n)^(2n): exponent of 2 in (2n)^(2n).

Original entry on oeis.org

2, 8, 6, 24, 10, 24, 14, 64, 18, 40, 22, 72, 26, 56, 30, 160, 34, 72, 38, 120, 42, 88, 46, 192, 50, 104, 54, 168, 58, 120, 62, 384, 66, 136, 70, 216, 74, 152, 78, 320, 82, 168, 86, 264, 90, 184, 94, 480, 98, 200, 102, 312, 106, 216, 110, 448, 114, 232, 118, 360, 122
Offset: 1

Views

Author

Labos Elemer, Apr 10 2002

Keywords

Crossrefs

Cf. A001511, A007814, A085534, A091512, A249153 (partial sums).

Programs

  • Julia
    function A069895List(length)
        a = zeros(Int, length)
        for n in 1:length a[n] = 2 * (isodd(n) ? n : n + a[div(n, 2)]) end
    a end
    A069895List(61) |> println # Peter Luschny, Oct 16 2021
    
  • Maple
    a:= 2*n*padic[ordp](2*n, 2):
    seq(a(n), n=1..61);  # Alois P. Heinz, Oct 14 2021
  • Mathematica
    Table[ Part[ Flatten[ FactorInteger[n^n]], 2], {n, 2, 124, 2}]
  • PARI
    a(n) = n<<=1; n*valuation(n,2); \\ Kevin Ryde, Oct 14 2021
    
  • Python
    def A069895(n): return n*(n&-n).bit_length()<<1 # Chai Wah Wu, Jul 11 2022

Formula

a(n) = 2*n*A001511(n).
a(n) = A007814(A085534(n)). [corrected by Kevin Ryde, Oct 15 2021]
G.f.: Sum_{k>=0} 2^(k+1)*x^2^k/(1-x^2^k)^2. - Ralf Stephan, Jun 07 2003
a(n) = 2 * A091512(n). - Alois P. Heinz, Oct 14 2021
Sum_{k=1..n} a(k) ~ 2*n^2. - Amiram Eldar, Sep 13 2024

A249152 Exponent of 2 in the hyperfactorials: a(n) = A007814(A002109(n)).

Original entry on oeis.org

0, 0, 2, 2, 10, 10, 16, 16, 40, 40, 50, 50, 74, 74, 88, 88, 152, 152, 170, 170, 210, 210, 232, 232, 304, 304, 330, 330, 386, 386, 416, 416, 576, 576, 610, 610, 682, 682, 720, 720, 840, 840, 882, 882, 970, 970, 1016, 1016, 1208, 1208, 1258, 1258, 1362, 1362, 1416, 1416, 1584, 1584, 1642, 1642
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

This is the function ord_2(D*_n) listed in the leftmost column of Table 7.1 in Lagarias & Mehta 2014 paper (on page 19).

Crossrefs

Bisection: A249153.
Cf. A133457 (binary exponents).

Programs

  • Magma
    [0] cat [&+[i*Valuation(i, 2):i in [1..n]]:n in [1..60]]; // Marius A. Burtea, Oct 18 2019
    
  • Maple
    with(padic): seq(add(i*ordp(i, 2), i=1..n), n=0..60); # Ridouane Oudra, Oct 17 2019
  • Mathematica
    Table[i=0;Hyperfactorial@n//.x_/;EvenQ@x:>(i++;x/2);i,{n,0,60}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • PARI
    a(n) = sum(i=1, n, i*valuation(i, 2)); \\ Michel Marcus, Sep 14 2021
    
  • PARI
    a(n) = my(v=binary(n),t=0); forstep(j=#v,1,-1, if(v[j],v[j]=t--,t++)); (n^2 + fromdigits(v,2))>>1; \\ Kevin Ryde, Nov 03 2021
    
  • Python
    def A249152(n): return sum(i*(~i&i-1).bit_length() for i in range(2,n+1,2)) # Chai Wah Wu, Jul 11 2022

Formula

a(n) = 2 * A143157(floor(n/2)).
a(n) = A174605(n) + A187059(n). [Lagarias and Mehta theorem 4.1 for p=2]
a(n) = Sum_{i=1..n} i*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Oct 17 2019
a(n) ~ (n^2+2n)/2 as n -> infinity. - Luca Onnis, Oct 17 2021
a(n) ~ ((A011371(n))^2)/2 as n -> infinity. - Luca Onnis, Nov 02 2021
From Kevin Ryde, Nov 03 2021: (Start)
a(2n) = a(2n+1) = 2*a(n) + n*(n+1).
a(n) = ( n^2 + Sum_{j=1..k} (e[j]-2*j+1) * 2^e[j] )/2, where binary expansion n = 2^e[1] + ... + 2^e[k] with ascending exponents e[1] < e[2] < ... < e[k] (A133457).
(End)
a(n) = Sum_{j=1..floor(log_2(n))} j*2^j*round(n/2^(j+1))^2, for n>=1. - Ridouane Oudra, Oct 01 2022

A143157 Partial sums of A091512.

Original entry on oeis.org

0, 1, 5, 8, 20, 25, 37, 44, 76, 85, 105, 116, 152, 165, 193, 208, 288, 305, 341, 360, 420, 441, 485, 508, 604, 629, 681, 708, 792, 821, 881, 912, 1104, 1137, 1205, 1240, 1348, 1385, 1461, 1500, 1660, 1701, 1785, 1828, 1960, 2005, 2097, 2144, 2384, 2433, 2533, 2584, 2740, 2793, 2901, 2956, 3180
Offset: 0

Views

Author

Gary W. Adamson, Jul 27 2008

Keywords

Examples

			a(4) = 20 = sum of row 4 terms of triangle A143156, (7 + 6 + 4 + 3).
a(4) = 20 = partial sums of first 4 terms of A091512: (1 + 4 + 3 + 12).
a(4) = 20 = Sum_{j=1..4} j*A001511(j) = 1*1 + 2*2 + 3*1 + 4*3.
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Accumulate@ Array[IntegerExponent[(2 #)^#, 2] &, 56] (* Michael De Vlieger, Sep 29 2019 *)
  • Python
    def A143157(n): return sum(i*(~i&i-1).bit_length() for i in range(2,2*n+1,2))>>1 # Chai Wah Wu, Jul 11 2022

Formula

Partial sums of A091512 = Sum_{j>=1} j*A001511(j), where A001511 is the ruler sequence.
Row sums of triangle A143156.
a(n) = A249152(2*n)/2 = A249153(n) / 2. - Antti Karttunen, Oct 25 2014
a(n) = (1/2)*n*(n + 1) + Sum_{i=1..n} i*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Sep 03 2019; Jan 22 2021
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x)^3. - Ilya Gutkovskiy, Oct 30 2019
a(n) ~ n^2. - Amiram Eldar, Sep 10 2024

Extensions

a(0) = 0 prepended and more terms computed by Antti Karttunen, Oct 25 2014
Showing 1-3 of 3 results.