cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143166 a(n) = n*(8*n^2 + 1)/3.

Original entry on oeis.org

0, 3, 22, 73, 172, 335, 578, 917, 1368, 1947, 2670, 3553, 4612, 5863, 7322, 9005, 10928, 13107, 15558, 18297, 21340, 24703, 28402, 32453, 36872, 41675, 46878, 52497, 58548, 65047, 72010, 79453, 87392, 95843, 104822, 114345, 124428, 135087, 146338, 158197
Offset: 0

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Comments

One fourth of the sum of p^2 + q^2 over the discrete square frame of length 2*n centered around the origin (called the 2n-frame). See the Wolfdieter Lang link below.
Because the summation over p*q becomes zero due to symmetry, this is also the sum over, e.g., (p+q)^2.
The total number of sites (vertices) s(n) of a square around (0,0) with length 2*n, is (2*n+1)^2. The 2n-frame borders 8*n = s(n) - s(n-1) sites, for n>=1. For n=0 only the site (0,0) is considered.
The author was led to consider such sums by a (much more difficult) question asked by R. Thomale.
Convolution of 4*j-1 with 4*j-3, j=1..n. For n=4: [1,5,9,13] convolved with [3,7,11,15] gives a(4) = 1*(15) + 5*(11) + 9*(7) + 13*(3) = 172. - J. M. Bergot, May 27 2017

Examples

			The total sums S(n) are [0, 12, 100, 392, 1080, 2420, 4732, 8400, 13872, 21660, 32340, ...].
The 2n-frame sums are 4*a(n) = [0, 12, 88, 292, 688, 1340, 2312, 3668, 5472, 7788, 10680, 14212, 18448, 23452, 29288, 36020, 43712, 52428, 62232, 73188, 85360]. The sum is over 8*n numbers.
For n=1 the 8 numbers of the 2-frame are 2,1,2; 1,1; 2,1,2, summing to 4*a(1)=12.
		

Crossrefs

Programs

Formula

a(n) = (1/4)*(S(n) - S(n-1)), with a(0)=0 and S(n):=sum(sum(p^2+q^2,p=-n..+n),q=-n..+n) = 2*sum(sum((p^2,p=-n..+n), q=-n..+n) = 2*sum(p^2,p=-n..+n)*sum(1,q=-n..n) = 2*2*(n*(n+1)*(2*n+1))/6)*(2*n+1) = (2/3)*n*(n+1)*(2*n+1)^2.
a(n) = n*(8*n^2 + 1)/3.
G.f.: x*(3 + 10*x + 3*x^2)/(1-x)^4. - Vincenzo Librandi, Feb 05 2014
a(n) = T(n, 0) + 2*(Sum_{k=1..n-1}T(n,k)) + T(n,k), with the triangle T(n, k) = A069011(n, k) = n^2 + k^2. - Wolfdieter Lang, Aug 15 2019
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: exp(x)*x*(9 + 24*x + 8*x^2)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A118465(n)/3. (End)