cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118465 a(n) = 8*n^3 + n.

Original entry on oeis.org

0, 9, 66, 219, 516, 1005, 1734, 2751, 4104, 5841, 8010, 10659, 13836, 17589, 21966, 27015, 32784, 39321, 46674, 54891, 64020, 74109, 85206, 97359, 110616, 125025, 140634, 157491, 175644, 195141, 216030, 238359, 262176, 287529, 314466, 343035, 373284, 405261
Offset: 0

Views

Author

Mohamed Bouhamida, May 16 2006, Oct 02 2007

Keywords

Comments

(8*n^3 + n, 8*n^3 - n) solves the Diophantine equation 2*(X-Y)^3-(X+Y)=0.
(m*(2n)^k+n, m*(2n)^k-n) solves the Diophantine equation: 2m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 and where m is a positive integer. Also ((m*n^k+n)/2, (m*n^k-n)/2) solves the Diophantine equation: m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 where m is an odd number.
24*a(n) = (4*n+1)^3 + (4*n)^3 + (4*n-1)^3. - Bruno Berselli, May 12 2014

Crossrefs

Programs

  • Magma
    [8*n^3 + n: n in [0..30]]; // Wesley Ivan Hurt, May 13 2014
  • Maple
    A118465:=n->8*n^3 + n; seq(A118465(n), n=0..30); # Wesley Ivan Hurt, May 13 2014
  • Mathematica
    Table[8 n^3 + n, {n, 0, 35}]
    CoefficientList[Series[3 x (x + 3) (3 x + 1)/(-1 + x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,9,66,219},40] (* Harvey P. Dale, Feb 01 2023 *)

Formula

G.f.: 3*x*(x+3)*(3*x+1)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(n) = n*A081585(n). - Vincenzo Librandi, May 13 2014
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: exp(x)*x*(9 + 24*x + 8*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A143166(n). (End)

Extensions

Edited by Stefan Steinerberger, Jul 24 2007

A329020 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 44, 20, 0, 1, 8, 146, 580, 70, 0, 1, 10, 344, 4332, 8092, 252, 0, 1, 12, 670, 18152, 135954, 116304, 924, 0, 1, 14, 1156, 55252, 1012664, 4395456, 1703636, 3432, 0, 1, 16, 1834, 137292, 4816030, 58199208, 144840476, 25288120, 12870, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2019

Keywords

Examples

			(x^3 + x + 1/x + 1/x^3)^2 = x^6 + 2*x^4 + 3*x^2 + 4 + 3/x^2 + 2/x^4 + 1/x^6. So T(1,2) = 4.
Square array begins:
   1,   1,      1,       1,        1,         1, ...
   0,   2,      4,       6,        8,        10, ...
   0,   6,     44,     146,      344,       670, ...
   0,  20,    580,    4332,    18152,     55252, ...
   0,  70,   8092,  135954,  1012664,   4816030, ...
   0, 252, 116304, 4395456, 58199208, 432457640, ...
		

Crossrefs

Columns k=0-3 give A000007, A000984, A005721, A063419.
Rows n=0-2 give A000012, A005843, 2*A143166.
Main diagonal gives A329021.
Cf. A077042.

Programs

  • Mathematica
    T[n_, 0] = Boole[n == 0]; T[n_, k_] := Sum[(-1)^j * Binomial[2*n, j] * Binomial[(2*k + 1)*n - 2*k*j - 1, (2*k - 1)*n - 2*k*j], {j, 0, Floor[(2*k - 1)*n/(2*k)]}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)

Formula

T(n,k) = Sum_{j=0..floor((2*k-1)*n/(2*k))} (-1)^j * binomial(2*n,j) * binomial((2*k+1)*n-2*k*j-1,(2*k-1)*n-2*k*j) for k > 0.
Showing 1-2 of 2 results.