A118465 a(n) = 8*n^3 + n.
0, 9, 66, 219, 516, 1005, 1734, 2751, 4104, 5841, 8010, 10659, 13836, 17589, 21966, 27015, 32784, 39321, 46674, 54891, 64020, 74109, 85206, 97359, 110616, 125025, 140634, 157491, 175644, 195141, 216030, 238359, 262176, 287529, 314466, 343035, 373284, 405261
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[8*n^3 + n: n in [0..30]]; // Wesley Ivan Hurt, May 13 2014
-
Maple
A118465:=n->8*n^3 + n; seq(A118465(n), n=0..30); # Wesley Ivan Hurt, May 13 2014
-
Mathematica
Table[8 n^3 + n, {n, 0, 35}] CoefficientList[Series[3 x (x + 3) (3 x + 1)/(-1 + x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *) LinearRecurrence[{4,-6,4,-1},{0,9,66,219},40] (* Harvey P. Dale, Feb 01 2023 *)
Formula
G.f.: 3*x*(x+3)*(3*x+1)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(n) = n*A081585(n). - Vincenzo Librandi, May 13 2014
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: exp(x)*x*(9 + 24*x + 8*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A143166(n). (End)
Extensions
Edited by Stefan Steinerberger, Jul 24 2007
Comments