A143183 Triangle T(n,k) = 1 + (2+n)*abs(n-2*k), read by rows, for 0 <= k <= n.
1, 4, 4, 9, 1, 9, 16, 6, 6, 16, 25, 13, 1, 13, 25, 36, 22, 8, 8, 22, 36, 49, 33, 17, 1, 17, 33, 49, 64, 46, 28, 10, 10, 28, 46, 64, 81, 61, 41, 21, 1, 21, 41, 61, 81, 100, 78, 56, 34, 12, 12, 34, 56, 78, 100, 121, 97, 73, 49, 25, 1, 25, 49, 73, 97, 121
Offset: 0
Examples
Triangle begins as: 1; 4, 4; 9, 1, 9; 16, 6, 6, 16; 25, 13, 1, 13, 25; 36, 22, 8, 8, 22, 36; 49, 33, 17, 1, 17, 33, 49; 64, 46, 28, 10, 10, 28, 46, 64; 81, 61, 41, 21, 1, 21, 41, 61, 81; 100, 78, 56, 34, 12, 12, 34, 56, 78, 100; 121, 97, 73, 49, 25, 1, 25, 49, 73, 97, 121;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[1+(n+2)*Abs(n-2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 23 2024
-
Maple
A143183 := proc(n,k) 1+(2+n)*abs(n-2*m) ; end proc: # R. J. Mathar, Jul 12 2012
-
Mathematica
T[n_, m_]:= 1 + Abs[(n-m+1)^2 - (m+1)^2]; Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
SageMath
flatten([[1+(n+2)*abs(n-2*k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 23 2024
Formula
T(n, k) = 1 + (2+n)*abs(n-2*k), for 0 <= k <= n.
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n, k) = (n+2)*A007590(n+1) + n + 1 (row sums).
From G. C. Greubel, Apr 23 2024: (Start)
T(n, 0) = A000290(n+1).
T(2*n-1, n) = A005843(n+1), n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1 + (-1)^n)*((n^2 + 3*n + 3) - (-1)^(n/2)*(n + 2)). (End)
Extensions
Row sums corrected by R. J. Mathar, Jul 12 2012