A143201 Product of distances between prime factors in factorization of n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 3, 1, 1, 2, 1, 4, 5, 10, 1, 2, 1, 12, 1, 6, 1, 6, 1, 1, 9, 16, 3, 2, 1, 18, 11, 4, 1, 10, 1, 10, 3, 22, 1, 2, 1, 4, 15, 12, 1, 2, 7, 6, 17, 28, 1, 6, 1, 30, 5, 1, 9, 18, 1, 16, 21, 12, 1, 2, 1, 36, 3, 18, 5, 22, 1, 4, 1, 40, 1, 10, 13, 42, 27, 10, 1, 6, 7, 22
Offset: 1
Keywords
Examples
a(86) = a(43*2) = 43-2+1 = 42; a(138) = a(23*3*2) = (23-3+1)*(3-2+1) = 42; a(172) = a(43*2*2) = (43-2+1)*(2-2+1) = 42; a(182) = a(13*7*2) = (13-7+1)*(7-2+1) = 42; a(276) = a(23*3*2*2) = (23-3+1)*(3-2+1)*(2-2+1) = 42; a(330) = a(11*5*3*2) = (11-5+1)*(5-3+1)*(3-2+1) = 42.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for primes, gaps between
Crossrefs
Programs
-
Haskell
a143201 1 = 1 a143201 n = product $ map (+ 1) $ zipWith (-) (tail pfs) pfs where pfs = a027748_row n -- Reinhard Zumkeller, Sep 13 2011
-
Mathematica
Table[Times@@(Differences[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[ n]]]+1),{n,100}] (* Harvey P. Dale, Dec 07 2011 *)
Formula
a(n) = f(n,1,1) where f(n,q,y) = if n=1 then y else if q=1 then f(n/p,p,1)) else f(n/p,p,y*(p-q+1)) with p = A020639(n) = smallest prime factor of n.
Comments