A143204 Union of A143207 and A033847.
14, 28, 30, 56, 60, 90, 98, 112, 120, 150, 180, 196, 224, 240, 270, 300, 360, 392, 448, 450, 480, 540, 600, 686, 720, 750, 784, 810, 896, 900, 960, 1080, 1200, 1350, 1372, 1440, 1500, 1568, 1620, 1792, 1800, 1920, 2160, 2250, 2400, 2430, 2700, 2744, 2880
Offset: 1
Examples
a(1) = 14 = 2 * 7 = A033847(1). a(2) = 28 = 2^2 * 7 = A033847(2). a(3) = 30 = 2 * 3 * 5 = A143207(1). a(4) = 56 = 2^3 * 7 = A033847(3). a(5) = 60 = 2^2 * 3 * 5 = A143207(2). a(6) = 90 = 2 * 3^2 * 5 = A143207(3). a(7) = 98 = 2 * 7^2 = A033847(4). a(8) = 112 = 2^4 * 7 = A033847(5). a(9) = 120 = 2^3 * 3 * 5 = A143207(4). a(10) = 150 = 2 * 3 * 5^2 = A143207(5). a(11) = 180 = 2^2 * 3^2 * 5 = A143207(6). a(12) = 196 = 2^2 * 7^2 = A033847(6).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_] := Module[{p1 = {2, 3, 5}, p2 = {2, 7}, e1, e2}, e1 = IntegerExponent[n, p1]; e2 = IntegerExponent[n, p2]; (Times @@ e1 > 0 && Times @@ (p1^e1) == n) || (Times @@ e2 > 0 && Times @@ (p2^e2) == n)]; Select[Range[3000], q] (* Amiram Eldar, Oct 25 2024 *)
Formula
A143201(a(n)) = 6. - Harvey P. Dale, Sep 13 2011
Sum_{n>=1} 1/a(n) = 7/24. - Amiram Eldar, Oct 25 2024
Extensions
Corrected by Harvey P. Dale, Aug 21 2011
Revised version with improved definition; thanks to Harvey P. Dale, who noticed that the original definition was not sufficient.
Comments