cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143207 Numbers with distinct prime factors 2, 3, and 5.

Original entry on oeis.org

30, 60, 90, 120, 150, 180, 240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810, 900, 960, 1080, 1200, 1350, 1440, 1500, 1620, 1800, 1920, 2160, 2250, 2400, 2430, 2700, 2880, 3000, 3240, 3600, 3750, 3840, 4050, 4320, 4500, 4800, 4860
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Numbers of the form 2^i * 3^j * 5^k with i, j, k > 0. - Reinhard Zumkeller, Sep 13 2011
Integers k such that phi(k)/k = 4/15. - Artur Jasinski, Nov 07 2008

Crossrefs

Cf. A069819.
Subsequence of A143204 and of A051037.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a143207 n = a143207_list !! (n-1)
    a143207_list = f (singleton (2*3*5)) where
       f s = m : f (insert (2*m) $ insert (3*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [n: n in [1..5000] | PrimeDivisors(n) eq [2,3,5]]; // Bruno Berselli, Sep 14 2015
    
  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 4/15, AppendTo[a, x]], {x, 1, 11664}]; a (* Artur Jasinski, Nov 07 2008 *)
    n = 10^4; Table[2^i*3^j*5^k, {i, 1, Log[2, n]}, {j, 1, Log[3, n/2^i]}, {k, 1, Log[5, n/(2^i*3^j)]}] // Flatten // Sort (* Amiram Eldar, Sep 24 2020 *)
  • PARI
    list(lim)=my(v=List(),s,t); for(i=1,logint(lim\6,5), t=5^i; for(j=1,logint(lim\t\2,3), s=t*3^j; while((s<<=1)<=lim, listput(v,s)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    is(n) = if(n%30,return(0)); my(f=factor(n,6)[,1]); f[#f]<6 \\ David A. Corneth, Sep 22 2020
    
  • Python
    from sympy import integer_log
    def A143207(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(m:=x//5**i,3)[0]+1):
                    c -= (m//3**j).bit_length()
            return c
        return bisection(f,n,n)*30 # Chai Wah Wu, Sep 16 2024

Formula

A001221(a(n)) = 3; A020639(a(n)) = 2; A006530(a(n)) = 5; A143201(a(n)) = 6.
a(n) = 30*A051037(n); A007947(a(n)) = A010869(n). - Reinhard Zumkeller, Sep 13 2011
a(n) ~ sqrt(30) * exp((6*log(2)*log(3)*log(5)*n)^(1/3)). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Sep 24 2020

Extensions

New name from Charles R Greathouse IV, Sep 14 2015

A033847 Numbers whose prime factors are 2 and 7.

Original entry on oeis.org

14, 28, 56, 98, 112, 196, 224, 392, 448, 686, 784, 896, 1372, 1568, 1792, 2744, 3136, 3584, 4802, 5488, 6272, 7168, 9604, 10976, 12544, 14336, 19208, 21952, 25088, 28672, 33614, 38416, 43904, 50176, 57344, 67228, 76832, 87808, 100352, 114688
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k) = (3/7)*k - Benoit Cloitre, Apr 19 2002
Subsequence of A143204. - Reinhard Zumkeller, Sep 13 2011

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033847 n = a033847_list !! (n-1)
    a033847_list = f (singleton (2*7)) where
       f s = m : f (insert (2*m) $ insert (7*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    With[{nn=20},Select[Union[Flatten[Table[2^n 7^k,{n,nn},{k,nn}]]],#<=2^nn 7&]] (* Harvey P. Dale, Nov 25 2020 *)

Formula

A143201(a(n)) = 6. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/6. - Amiram Eldar, Dec 22 2020

Extensions

Offset fixed by Reinhard Zumkeller, Sep 13 2011

A143201 Product of distances between prime factors in factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 3, 1, 1, 2, 1, 4, 5, 10, 1, 2, 1, 12, 1, 6, 1, 6, 1, 1, 9, 16, 3, 2, 1, 18, 11, 4, 1, 10, 1, 10, 3, 22, 1, 2, 1, 4, 15, 12, 1, 2, 7, 6, 17, 28, 1, 6, 1, 30, 5, 1, 9, 18, 1, 16, 21, 12, 1, 2, 1, 36, 3, 18, 5, 22, 1, 4, 1, 40, 1, 10, 13, 42, 27, 10, 1, 6, 7, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

a(n) is the product of the sum of 1 and first differences of prime factors of n with multiplicity, with a(n) = 1 for n = 1 or prime n. - Michael De Vlieger, Nov 12 2023.
a(A007947(n)) = a(n);
A006093 and A001747 give record values and where they occur:
A006093(n)=a(A001747(n+1)) for n>1.
a(n) = 1 iff n is a prime power: a(A000961(n))=1;
a(n) = 2 iff n has exactly 2 and 3 as prime factors:
a(A033845(n))=2;
a(n) = 3 iff n is in A143202;
a(n) = 4 iff n has exactly 2 and 5 as prime factors:
a(A033846(n))=4;
a(n) = 5 iff n is in A143203;
a(n) = 6 iff n is in A143204;
a(n) = 7 iff n is in A143205;
a(n) <> A006512(k)+1 for k>1.
a(A033849(n))=3; a(A033851(n))=3; a(A033850(n))=5; a(A033847(n))=6; a(A033848(n))=10. [Reinhard Zumkeller, Sep 19 2011]

Examples

			a(86) = a(43*2) = 43-2+1 = 42;
a(138) = a(23*3*2) = (23-3+1)*(3-2+1) = 42;
a(172) = a(43*2*2) = (43-2+1)*(2-2+1) = 42;
a(182) = a(13*7*2) = (13-7+1)*(7-2+1) = 42;
a(276) = a(23*3*2*2) = (23-3+1)*(3-2+1)*(2-2+1) = 42;
a(330) = a(11*5*3*2) = (11-5+1)*(5-3+1)*(3-2+1) = 42.
		

Crossrefs

Programs

  • Haskell
    a143201 1 = 1
    a143201 n = product $ map (+ 1) $ zipWith (-) (tail pfs) pfs
       where pfs = a027748_row n
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    Table[Times@@(Differences[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[ n]]]+1),{n,100}] (* Harvey P. Dale, Dec 07 2011 *)

Formula

a(n) = f(n,1,1) where f(n,q,y) = if n=1 then y else if q=1 then f(n/p,p,1)) else f(n/p,p,y*(p-q+1)) with p = A020639(n) = smallest prime factor of n.

A195238 Numbers with at least 2 and not more than 3 distinct prime factors not greater than 7 that are multiples of 7 or of 15.

Original entry on oeis.org

14, 15, 21, 28, 30, 35, 42, 45, 56, 60, 63, 70, 75, 84, 90, 98, 105, 112, 120, 126, 135, 140, 147, 150, 168, 175, 180, 189, 196, 224, 225, 240, 245, 252, 270, 280, 294, 300, 315, 336, 350, 360, 375, 378, 392, 405, 441, 448, 450, 480, 490, 504, 525, 540, 560
Offset: 1

Views

Author

Harvey P. Dale, Sep 13 2011

Keywords

Comments

A143204 is a subsequence.
Subsequence of A002473.

Examples

			a(10) = 60 = 2^2 * 3 * 5.
a(11) = 63 = 3^2 * 7.
a(12) = 70 = 2 * 5 * 7.
		

Crossrefs

Programs

  • Haskell
    a195238 n = a195238_list !! (n-1)
    a195238_list = filter (\x -> a001221 x `elem` [2,3] &&
                                 a006530 x `elem` [5,7] &&
                                 (mod x 7 == 0 || mod x 15 == 0)) [1..]
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Mathematica
    pfsQ[n_]:=Module[{fs=Transpose[FactorInteger[n]][[1]]},Max[fs]<8 && 1Harvey P. Dale, Aug 21 2011 *)
  • PARI
    is(n)=my(v=apply(p->valuation(n,p), [2,3,5,7])); n==2^v[1]*3^v[2]*5^v[3]*7^v[4] && (v[4] || v[2]*v[3]) && factorback(v)==0 && !!v[1]+!!v[2]+!!v[3]+!!v[4]>1 \\ Charles R Greathouse IV, Sep 14 2015

Formula

2 <= A001221(a(n)) <= 3.
5 <= A006530(a(n)) <= 7.
Sum_{n>=1} 1/a(n) = 11/16. - Amiram Eldar, Oct 25 2024
Showing 1-4 of 4 results.